Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from diffusers.models.attention_processor import Attention | |
from einops import rearrange | |
from ...attn_mask import RadialAttention | |
from typing import Optional | |
from diffusers.models.embeddings import apply_rotary_emb | |
from torch.nn.attention import sdpa_kernel, SDPBackend | |
class HunyuanVideoAttnSparseProcessor2_0: | |
mask_map = None | |
dense_timestep = 0 | |
dense_block = 0 | |
decay_factor = 1.0 | |
sparse_type = "radial" # default to radial attention, can be changed to | |
def __init__(self, layer_idx): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError( | |
"HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0." | |
) | |
self.layer_idx = layer_idx | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.Tensor] = None, | |
numeral_timestep: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
if attn.add_q_proj is None and encoder_hidden_states is not None: | |
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
# 1. QKV projections | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
# 2. QK normalization | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# 3. Rotational positional embeddings applied to latent stream | |
if image_rotary_emb is not None: | |
if attn.add_q_proj is None and encoder_hidden_states is not None: | |
query = torch.cat( | |
[ | |
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), | |
query[:, :, -encoder_hidden_states.shape[1] :], | |
], | |
dim=2, | |
) | |
key = torch.cat( | |
[ | |
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), | |
key[:, :, -encoder_hidden_states.shape[1] :], | |
], | |
dim=2, | |
) | |
else: | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
# 4. Encoder condition QKV projection and normalization | |
if attn.add_q_proj is not None and encoder_hidden_states is not None: | |
encoder_query = attn.add_q_proj(encoder_hidden_states) | |
encoder_key = attn.add_k_proj(encoder_hidden_states) | |
encoder_value = attn.add_v_proj(encoder_hidden_states) | |
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_query = attn.norm_added_q(encoder_query) | |
if attn.norm_added_k is not None: | |
encoder_key = attn.norm_added_k(encoder_key) | |
query = torch.cat([query, encoder_query], dim=2) | |
key = torch.cat([key, encoder_key], dim=2) | |
value = torch.cat([value, encoder_value], dim=2) | |
# 5. Attention | |
if timestep is None: # this is the case for dense attention | |
with sdpa_kernel(bzsackends=[SDPBackend.FLASH_ATTENTION]): | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False | |
) | |
else: # this is the case for sparse attention | |
# print(f"numeral_timestep: {numeral_timestep}, dense_timestep: {self.dense_timestep}, layer_idx: {self.layer_idx}, dense_block: {self.dense_block}, sparse_type: {self.sparse_type}") | |
if numeral_timestep < self.dense_timestep or self.layer_idx < self.dense_block or self.sparse_type == "dense": | |
with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False | |
) | |
else: | |
batch_size = query.shape[0] | |
query = rearrange(query, "b h s d" " -> (b s) h d") | |
key = rearrange(key, "b h s d" " -> (b s) h d") | |
value = rearrange(value, "b h s d" " -> (b s) h d") | |
# apply radial attention | |
hidden_states = RadialAttention( | |
query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type=self.sparse_type, block_size=128, decay_factor=self.decay_factor, model_type="hunyuan", | |
) | |
hidden_states = rearrange(hidden_states, "(b s) h d -> b h s d", b=batch_size) | |
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) | |
hidden_states = hidden_states.to(query.dtype) | |
# 6. Output projection | |
if encoder_hidden_states is not None: | |
hidden_states, encoder_hidden_states = ( | |
hidden_states[:, : -encoder_hidden_states.shape[1]], | |
hidden_states[:, -encoder_hidden_states.shape[1] :], | |
) | |
if getattr(attn, "to_out", None) is not None: | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) | |
if getattr(attn, "to_add_out", None) is not None: | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |