Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from diffusers.models.attention_processor import Attention | |
from einops import rearrange | |
from ...attn_mask import RadialAttention | |
from torch.nn.attention import sdpa_kernel, SDPBackend | |
class WanSparseAttnProcessor2_0: | |
mask_map = None | |
dense_timestep = 0 | |
dense_block = 0 | |
decay_factor = 1.0 | |
sparse_type = "radial" # default to radial attention, can be changed to "dense" for dense attention | |
def __init__(self, layer_idx): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") | |
self.layer_idx = layer_idx | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
rotary_emb: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.Tensor] = None, | |
numeral_timestep: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
encoder_hidden_states_img = None | |
if attn.add_k_proj is not None: | |
# 512 is the context length of the text encoder, hardcoded for now | |
image_context_length = encoder_hidden_states.shape[1] - 512 | |
encoder_hidden_states_img = encoder_hidden_states[:, :image_context_length] | |
encoder_hidden_states = encoder_hidden_states[:, image_context_length:] | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
if rotary_emb is not None: | |
def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor): | |
dtype = torch.float32 if hidden_states.device.type == "mps" else torch.float64 | |
x_rotated = torch.view_as_complex(hidden_states.to(dtype).unflatten(3, (-1, 2))) | |
x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4) | |
return x_out.type_as(hidden_states) | |
query = apply_rotary_emb(query, rotary_emb) | |
key = apply_rotary_emb(key, rotary_emb) | |
# I2V task | |
hidden_states_img = None | |
if encoder_hidden_states_img is not None: | |
key_img = attn.add_k_proj(encoder_hidden_states_img) | |
key_img = attn.norm_added_k(key_img) | |
value_img = attn.add_v_proj(encoder_hidden_states_img) | |
key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
hidden_states_img = F.scaled_dot_product_attention( | |
query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3) | |
hidden_states_img = hidden_states_img.type_as(query) | |
if timestep is None: # this is the case for dense attention or cross attention | |
with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False | |
) | |
else: # this is the case for sparse attention | |
if numeral_timestep < self.dense_timestep or self.layer_idx < self.dense_block or self.sparse_type == "dense": | |
with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False | |
) | |
else: | |
batch_size = query.shape[0] | |
# transform (batch_size, num_heads, seq_len, head_dim) to (seq_len * batch_size, num_heads, head_dim) | |
query = rearrange(query, "b h s d -> (b s) h d") | |
key = rearrange(key, "b h s d -> (b s) h d") | |
value = rearrange(value, "b h s d -> (b s) h d") | |
# apply radial attention | |
hidden_states = RadialAttention( | |
query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type="radial", block_size=128, decay_factor=self.decay_factor, model_type="wan", | |
) | |
# transform back to (batch_size, num_heads, seq_len, head_dim) | |
hidden_states = rearrange(hidden_states, "(b s) h d -> b h s d", b=batch_size) | |
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) | |
hidden_states = hidden_states.type_as(query) | |
if hidden_states_img is not None: | |
hidden_states = hidden_states + hidden_states_img | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |