Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers.models.attention_processor import Attention | |
from .attention import WanSparseAttnProcessor2_0 | |
from .sparse_transformer import replace_sparse_forward | |
from ...attn_mask import MaskMap | |
def replace_wan_attention( | |
pipe, | |
height, | |
width, | |
num_frames, | |
dense_layers=0, | |
dense_timesteps=0, | |
decay_factor=1.0, | |
sparsity_type="radial", | |
): | |
num_frames = 1 + num_frames // (pipe.vae_scale_factor_temporal * pipe.transformer.config.patch_size[0]) | |
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1] | |
frame_size = int(height // mod_value) * int(width // mod_value) | |
AttnModule = WanSparseAttnProcessor2_0 | |
AttnModule.dense_block = dense_layers | |
AttnModule.dense_timestep = dense_timesteps | |
AttnModule.mask_map = MaskMap(video_token_num=frame_size * num_frames, num_frame=num_frames) | |
AttnModule.decay_factor = decay_factor | |
AttnModule.sparsity_type = sparsity_type | |
print(f"Replacing Wan attention with {sparsity_type} attention") | |
print(f"video token num: {AttnModule.mask_map.video_token_num}, num frames: {num_frames}") | |
print(f"dense layers: {dense_layers}, dense timesteps: {dense_timesteps}, decay factor: {decay_factor}") | |
replace_sparse_forward() | |
for layer_idx, m in enumerate(pipe.transformer.blocks): | |
m.attn1.processor.layer_idx = layer_idx | |
for _, m in pipe.transformer.named_modules(): | |
if isinstance(m, Attention) and hasattr(m.processor, "layer_idx"): | |
layer_idx = m.processor.layer_idx | |
m.set_processor(AttnModule(layer_idx)) |