Spaces:
Running
on
Zero
Running
on
Zero
# borrowed from svg-project/Sparse-VideoGen | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from diffusers.models.transformers.transformer_wan import WanTransformerBlock, WanTransformer3DModel | |
from diffusers import WanPipeline, WanImageToVideoPipeline | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
logger = logging.get_logger(__name__) | |
from typing import Any, Callable, Dict, List, Optional, Union | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput | |
class WanTransformerBlock_Sparse(WanTransformerBlock): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
rotary_emb: torch.Tensor, | |
timestep: int = 0, | |
numeral_timestep: Optional[int] = None, | |
) -> torch.Tensor: | |
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = ( | |
self.scale_shift_table + temb.float() | |
).chunk(6, dim=1) | |
# 1. Self-attention | |
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states) | |
attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb, timestep=timestep, numeral_timestep=numeral_timestep) | |
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states) | |
# 2. Cross-attention | |
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states) | |
attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=encoder_hidden_states) | |
hidden_states = hidden_states + attn_output | |
# 3. Feed-forward | |
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as( | |
hidden_states | |
) | |
ff_output = self.ffn(norm_hidden_states) | |
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states) | |
return hidden_states | |
class WanTransformer3DModel_Sparse(WanTransformer3DModel): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_hidden_states: torch.Tensor, | |
numeral_timestep: Optional[int] = None, | |
encoder_hidden_states_image: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p_t, p_h, p_w = self.config.patch_size | |
post_patch_num_frames = num_frames // p_t | |
post_patch_height = height // p_h | |
post_patch_width = width // p_w | |
rotary_emb = self.rope(hidden_states) | |
hidden_states = self.patch_embedding(hidden_states) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder( | |
timestep, encoder_hidden_states, encoder_hidden_states_image | |
) | |
timestep_proj = timestep_proj.unflatten(1, (6, -1)) | |
if encoder_hidden_states_image is not None: | |
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1) | |
# 4. Transformer blocks | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
for block in self.blocks: | |
hidden_states = self._gradient_checkpointing_func( | |
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb, timestep=timestep, numeral_timestep=numeral_timestep | |
) | |
else: | |
for block in self.blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states, | |
timestep_proj, | |
rotary_emb, | |
timestep=timestep, | |
numeral_timestep=numeral_timestep, | |
) | |
# 5. Output norm, projection & unpatchify | |
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1) | |
# Move the shift and scale tensors to the same device as hidden_states. | |
# When using multi-GPU inference via accelerate these will be on the | |
# first device rather than the last device, which hidden_states ends up | |
# on. | |
shift = shift.to(hidden_states.device) | |
scale = scale.to(hidden_states.device) | |
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape( | |
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1 | |
) | |
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) | |
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
class WanPipeline_Sparse(WanPipeline): | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
height: int = 480, | |
width: int = 832, | |
num_frames: int = 81, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
num_videos_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, defaults to `480`): | |
The height in pixels of the generated image. | |
width (`int`, defaults to `832`): | |
The width in pixels of the generated image. | |
num_frames (`int`, defaults to `81`): | |
The number of frames in the generated video. | |
num_inference_steps (`int`, defaults to `50`): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, defaults to `5.0`): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple. | |
attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`): | |
The dtype to use for the torch.amp.autocast. | |
Examples: | |
Returns: | |
[`~WanPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where | |
the first element is a list with the generated images and the second element is a list of `bool`s | |
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. | |
""" | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
negative_prompt, | |
height, | |
width, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._current_timestep = None | |
self._interrupt = False | |
device = self._execution_device | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
transformer_dtype = self.transformer.dtype | |
prompt_embeds = prompt_embeds.to(transformer_dtype) | |
if negative_prompt_embeds is not None: | |
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
num_frames, | |
torch.float32, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
latent_model_input = latents.to(transformer_dtype) | |
timestep = t.expand(latents.shape[0]) | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
numeral_timestep=i, | |
)[0] | |
if self.do_classifier_free_guidance: | |
noise_uncond = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=negative_prompt_embeds, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
numeral_timestep=i, | |
)[0] | |
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
self._current_timestep = None | |
if not output_type == "latent": | |
latents = latents.to(self.vae.dtype) | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean) | |
.view(1, self.vae.config.z_dim, 1, 1, 1) | |
.to(latents.device, latents.dtype) | |
) | |
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
latents.device, latents.dtype | |
) | |
latents = latents / latents_std + latents_mean | |
video = self.vae.decode(latents, return_dict=False)[0] | |
video = self.video_processor.postprocess_video(video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return WanPipelineOutput(frames=video) | |
class WanImageToVideoPipeline_Sparse(WanImageToVideoPipeline): | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
height: int = 480, | |
width: int = 832, | |
num_frames: int = 81, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
num_videos_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
last_image: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
): | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
self.check_inputs( | |
prompt, | |
negative_prompt, | |
image, | |
height, | |
width, | |
prompt_embeds, | |
negative_prompt_embeds, | |
image_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
if num_frames % self.vae_scale_factor_temporal != 1: | |
logger.warning( | |
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number." | |
) | |
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1 | |
num_frames = max(num_frames, 1) | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._current_timestep = None | |
self._interrupt = False | |
device = self._execution_device | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
transformer_dtype = self.transformer.dtype | |
prompt_embeds = prompt_embeds.to(transformer_dtype) | |
if negative_prompt_embeds is not None: | |
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) | |
if image_embeds is None: | |
if last_image is None: | |
image_embeds = self.encode_image(image, device) | |
else: | |
image_embeds = self.encode_image([image, last_image], device) | |
image_embeds = image_embeds.repeat(batch_size, 1, 1) | |
image_embeds = image_embeds.to(transformer_dtype) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.vae.config.z_dim | |
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32) | |
if last_image is not None: | |
last_image = self.video_processor.preprocess(last_image, height=height, width=width).to( | |
device, dtype=torch.float32 | |
) | |
latents, condition = self.prepare_latents( | |
image, | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
num_frames, | |
torch.float32, | |
device, | |
generator, | |
latents, | |
last_image, | |
) | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype) | |
timestep = t.expand(latents.shape[0]) | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
encoder_hidden_states_image=image_embeds, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
numeral_timestep=i, # <--- MODIFICATION | |
)[0] | |
if self.do_classifier_free_guidance: | |
noise_uncond = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=negative_prompt_embeds, | |
encoder_hidden_states_image=image_embeds, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
numeral_timestep=i, # <--- MODIFICATION | |
)[0] | |
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond) | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
self._current_timestep = None | |
if not output_type == "latent": | |
latents = latents.to(self.vae.dtype) | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean) | |
.view(1, self.vae.config.z_dim, 1, 1, 1) | |
.to(latents.device, latents.dtype) | |
) | |
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
latents.device, latents.dtype | |
) | |
latents = latents / latents_std + latents_mean | |
video = self.vae.decode(latents, return_dict=False)[0] | |
video = self.video_processor.postprocess_video(video, output_type=output_type) | |
else: | |
video = latents | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return WanPipelineOutput(frames=video) | |
def replace_sparse_forward(): | |
WanTransformerBlock.forward = WanTransformerBlock_Sparse.forward | |
WanTransformer3DModel.forward = WanTransformer3DModel_Sparse.forward | |
WanPipeline.__call__ = WanPipeline_Sparse.__call__ | |
WanImageToVideoPipeline.__call__ = WanImageToVideoPipeline_Sparse.__call__ | |