import torch from diffusers.models.attention_processor import Attention from .attention import HunyuanVideoAttnSparseProcessor2_0 from .sparse_transformer import replace_sparse_forward from ...attn_mask import MaskMap def replace_hunyuan_attention( pipe, height, width, num_frames, dense_layers=0, dense_timesteps=0, decay_factor=1.0, sparsity_type="radial", ): num_frames = 1 + (num_frames - 1) // (pipe.vae_scale_factor_temporal) mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size frame_size = int(height // mod_value) * int(width // mod_value) AttnModule = HunyuanVideoAttnSparseProcessor2_0 AttnModule.dense_block = dense_layers AttnModule.dense_timestep = dense_timesteps AttnModule.mask_map = MaskMap(video_token_num=frame_size * num_frames, num_frame=num_frames) AttnModule.decay_factor = decay_factor AttnModule.sparsity_type = sparsity_type print(f"Replacing Hunyuan attention with {sparsity_type} attention") print(f"video token num: {AttnModule.mask_map.video_token_num}, num frames: {num_frames}") print(f"dense layers: {dense_layers}, dense timesteps: {dense_timesteps}, decay factor: {decay_factor}") replace_sparse_forward() for layer_idx, m in enumerate(pipe.transformer.transformer_blocks): m.attn.processor.layer_idx = layer_idx for layer_idx, m in enumerate(pipe.transformer.single_transformer_blocks): m.attn.processor.layer_idx = layer_idx + 20 for _, m in pipe.transformer.named_modules(): # if isinstance(m, Attention): # # print all of the attr # import pdb; pdb.set_trace() # print(f"attr: {m.__dict__}") if isinstance(m, Attention) and hasattr(m.processor, "layer_idx"): layer_idx = m.processor.layer_idx m.set_processor(AttnModule(layer_idx))