Spaces:
Runtime error
Runtime error
| import torch | |
| from torchvision import transforms as T | |
| import gradio as gr | |
| class App: | |
| title = 'Scene Text Recognition with<br/>Permuted Autoregressive Sequence Models' | |
| models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr'] | |
| def __init__(self): | |
| self._model_cache = {} | |
| self._preprocess = T.Compose([ | |
| T.Resize((32, 128), T.InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(0.5, 0.5) | |
| ]) | |
| def _get_model(self, name): | |
| if name in self._model_cache: | |
| return self._model_cache[name] | |
| model = torch.hub.load('baudm/parseq', name, pretrained=True).eval() | |
| self._model_cache[name] = model | |
| return model | |
| def __call__(self, model_name, image): | |
| if image is None: | |
| return '', [] | |
| model = self._get_model(model_name) | |
| image = self._preprocess(image.convert('RGB')).unsqueeze(0) | |
| # Greedy decoding | |
| pred = model(image).softmax(-1) | |
| label, _ = model.tokenizer.decode(pred) | |
| raw_label, raw_confidence = model.tokenizer.decode(pred, raw=True) | |
| # Format confidence values | |
| max_len = 25 if model_name == 'crnn' else len(label[0]) + 1 | |
| conf = list(map('{:0.1f}'.format, raw_confidence[0][:max_len].tolist())) | |
| return label[0], [raw_label[0][:max_len], conf] | |
| def main(): | |
| app = App() | |
| with gr.Blocks(analytics_enabled=False, title=app.title.replace('<br/>', ' ')) as demo: | |
| model_name = gr.Radio(app.models, value=app.models[0], label='The STR model to use') | |
| with gr.Tabs(): | |
| with gr.TabItem('Image Upload'): | |
| image_upload = gr.Image(type='pil', label='Image') | |
| read_upload = gr.Button('Read Text') | |
| output = gr.Textbox(max_lines=1, label='Model output') | |
| #adv_output = gr.Checkbox(label='Show detailed output') | |
| raw_output = gr.Dataframe(row_count=2, col_count=0, label='Raw output with confidence values ([0, 1] interval; [B] - BLANK token; [E] - EOS token)') | |
| read_upload.click(app, inputs=[model_name, image_upload], outputs=[output, raw_output]) | |
| #adv_output.change(lambda x: gr.update(visible=x), inputs=adv_output, outputs=raw_output) | |
| demo.queue(max_size=20) | |
| demo.launch() | |
| if __name__ == '__main__': | |
| main() |