update
Browse files- app.py +3 -3
- lib/ocr_2.py +303 -0
app.py
CHANGED
@@ -5,7 +5,7 @@ from flask import Flask, request, jsonify, Response
|
|
5 |
import pytesseract
|
6 |
from pdf2image import convert_from_bytes
|
7 |
from flask_cors import CORS
|
8 |
-
from lib import ocr_1
|
9 |
from lib import llm_3 as llm
|
10 |
|
11 |
os.environ['TESSDATA_PREFIX'] = '/usr/share/tesseract-ocr/5/tessdata'
|
@@ -46,11 +46,11 @@ def upload_file():
|
|
46 |
# text += pytesseract.image_to_string(img, lang='rus')
|
47 |
|
48 |
|
49 |
-
docs_info =
|
50 |
|
51 |
|
52 |
os.remove(temp_path)
|
53 |
-
return json.dumps(docs_info, sort_keys=False)
|
54 |
else:
|
55 |
return jsonify({'error': 'File must be a PDF'})
|
56 |
|
|
|
5 |
import pytesseract
|
6 |
from pdf2image import convert_from_bytes
|
7 |
from flask_cors import CORS
|
8 |
+
from lib import ocr_1 as ocr
|
9 |
from lib import llm_3 as llm
|
10 |
|
11 |
os.environ['TESSDATA_PREFIX'] = '/usr/share/tesseract-ocr/5/tessdata'
|
|
|
46 |
# text += pytesseract.image_to_string(img, lang='rus')
|
47 |
|
48 |
|
49 |
+
docs_info = ocr.processSingleFile(temp_path)
|
50 |
|
51 |
|
52 |
os.remove(temp_path)
|
53 |
+
return Response(json.dumps(docs_info, sort_keys=False, ensure_ascii=False), content_type='application/json; charset=utf-8')
|
54 |
else:
|
55 |
return jsonify({'error': 'File must be a PDF'})
|
56 |
|
lib/ocr_2.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageFilter
|
2 |
+
import cv2
|
3 |
+
import pytesseract
|
4 |
+
from pytesseract import Output
|
5 |
+
from os import listdir, getcwd
|
6 |
+
from os.path import isfile, join
|
7 |
+
import numpy as np
|
8 |
+
import json
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from pdf2image import convert_from_path
|
11 |
+
from matplotlib import pyplot as plt
|
12 |
+
import re
|
13 |
+
import requests
|
14 |
+
import json
|
15 |
+
|
16 |
+
def getResponse(prompt) :
|
17 |
+
url = "https://muryshev-mixtral-api.hf.space/completion"
|
18 |
+
|
19 |
+
payload = json.dumps({
|
20 |
+
"prompt": '[INST]' + prompt + '[/INST]'
|
21 |
+
})
|
22 |
+
|
23 |
+
headers = {
|
24 |
+
'Content-Type': 'application/json'
|
25 |
+
}
|
26 |
+
|
27 |
+
response = requests.request("POST", url, headers = headers, data = payload)
|
28 |
+
result = response.content.decode('utf-8')
|
29 |
+
return result
|
30 |
+
|
31 |
+
def getOrgAddr(application) :
|
32 |
+
# prefix = ''''Отвечайте всегда ТОЛЬКО НА РУССКОМ языке. Я предоставляю тебе "материал". Идентифицируй организацию и адрес организации в зависимости от указанного филиала.
|
33 |
+
# Используй такой формат: "Организация: *название*; Отделение/филиал: *название* если есть; Адрес: *адрес*;".
|
34 |
+
# Ты не комментируешь, не объясняешь, не выражаешь мысли, вообще ничего больше не говоришь.
|
35 |
+
# Материал: '''
|
36 |
+
|
37 |
+
prefix = ''''Отвечайте всегда ТОЛЬКО НА РУССКОМ языке. Я предоставляю тебе "материал". Идентифицируй организацию и адрес организации в зависимости от указанного филиала.
|
38 |
+
Используй такой формат: "Организация: *название*; Адрес: *адрес*;".
|
39 |
+
Ты не комментируешь, не объясняешь, не выражаешь мысли, вообще ничего больше не говоришь.
|
40 |
+
Материал: '''
|
41 |
+
|
42 |
+
prompt = prefix + application
|
43 |
+
response = getResponse(prompt)
|
44 |
+
|
45 |
+
s = response.strip()
|
46 |
+
# x = s.find('Адрес:')
|
47 |
+
# if x != -1 :
|
48 |
+
# y = s.find('(', x)
|
49 |
+
# if y != -1 :
|
50 |
+
# s = s[: y]
|
51 |
+
l = response.split('\n')
|
52 |
+
ll = []
|
53 |
+
for s in l :
|
54 |
+
s = s.strip()
|
55 |
+
if ('Адрес:' in s or 'Организация:' in s) and s not in ll :
|
56 |
+
ll.append(s)
|
57 |
+
|
58 |
+
result = '\n'.join(ll)
|
59 |
+
|
60 |
+
return result
|
61 |
+
|
62 |
+
def processFiles(pdfs, verbose = False) :
|
63 |
+
images_per_pdf_2d = [convert_from_path(file) for file in pdfs]
|
64 |
+
|
65 |
+
images_per_pdf = []
|
66 |
+
docfilenames = []
|
67 |
+
pagenames = []
|
68 |
+
fileindices = []
|
69 |
+
for i in range(len(images_per_pdf_2d)) :
|
70 |
+
docfilenames.append(filenames[i][:-4])
|
71 |
+
pageindices = []
|
72 |
+
for j in range(len(images_per_pdf_2d[i])) :
|
73 |
+
images_per_pdf.append(images_per_pdf_2d[i][j])
|
74 |
+
pagenames.append(filenames[i][:-4] + '_page_' + str(j))
|
75 |
+
pageindices.append(len(pagenames) - 1)
|
76 |
+
# print(i, j, len(pagenames) - 1, pagenames[-1])
|
77 |
+
|
78 |
+
fileindices.append(pageindices)
|
79 |
+
|
80 |
+
gray_images_per_pdf_cropped = []
|
81 |
+
for i in range(len(images_per_pdf)) :
|
82 |
+
image = images_per_pdf[i]
|
83 |
+
crop = image.convert("L").crop((
|
84 |
+
750, 150, # left top point
|
85 |
+
1654, 850 # right bottom point
|
86 |
+
))
|
87 |
+
gray_images_per_pdf_cropped.append(crop)
|
88 |
+
|
89 |
+
texts = [pytesseract.image_to_string(image, lang='rus') for image in gray_images_per_pdf_cropped]
|
90 |
+
fulltexts = [pytesseract.image_to_string(image, lang='rus') for image in images_per_pdf]
|
91 |
+
|
92 |
+
cropped_images = gray_images_per_pdf_cropped
|
93 |
+
init_size = cropped_images[0].size
|
94 |
+
thresh_imgs = [
|
95 |
+
image.resize(
|
96 |
+
(init_size[0] //4, init_size[1] // 4)
|
97 |
+
).point(
|
98 |
+
lambda x: 0 if x < 220 else 255
|
99 |
+
).filter(
|
100 |
+
ImageFilter.MedianFilter(5)
|
101 |
+
).filter(
|
102 |
+
ImageFilter.MinFilter(15) #15
|
103 |
+
) for i,(name,image) in enumerate(zip(pagenames, cropped_images))
|
104 |
+
]
|
105 |
+
|
106 |
+
masks = thresh_imgs
|
107 |
+
masks_arr = [np.array(img) for img in masks]
|
108 |
+
mask_shape = masks_arr[0].shape
|
109 |
+
|
110 |
+
str_size = 7
|
111 |
+
masks = []
|
112 |
+
masks_bw = []
|
113 |
+
for name, mask in zip(pagenames, masks_arr):
|
114 |
+
cleaned_mask = mask.copy()
|
115 |
+
|
116 |
+
for iter in range(mask_shape[0] // str_size):
|
117 |
+
temp_mean = int(cleaned_mask[iter*str_size : iter*str_size + str_size, :].mean())
|
118 |
+
|
119 |
+
if (temp_mean < 49) or (temp_mean > 160):
|
120 |
+
cleaned_mask[iter*str_size : iter*str_size + str_size, :] = 255
|
121 |
+
|
122 |
+
vertical_threshold = 200
|
123 |
+
|
124 |
+
for i in range(mask_shape[1] // str_size + 1):
|
125 |
+
if (i*str_size + str_size) > mask_shape[1]:
|
126 |
+
temp_mean_vertical = int(cleaned_mask[:, i*str_size : mask_shape[1]].mean())
|
127 |
+
|
128 |
+
if temp_mean_vertical > vertical_threshold:
|
129 |
+
cleaned_mask[:, i*str_size : mask_shape[1]] = 255
|
130 |
+
else:
|
131 |
+
temp_mean_vertical = int(cleaned_mask[:, i*str_size : i*str_size + str_size].mean())
|
132 |
+
|
133 |
+
if temp_mean_vertical > vertical_threshold:
|
134 |
+
cleaned_mask[:, i*str_size : i*str_size + str_size] = 255
|
135 |
+
|
136 |
+
image = Image.fromarray(cleaned_mask).filter(
|
137 |
+
ImageFilter.MedianFilter(13)
|
138 |
+
).filter(
|
139 |
+
ImageFilter.MinFilter(25) #15
|
140 |
+
)
|
141 |
+
masks.append(image)
|
142 |
+
masks_bw.append(image.convert('1'))
|
143 |
+
|
144 |
+
masks_bw_arr = [np.array(img) for img in masks_bw]
|
145 |
+
|
146 |
+
# check which pages have address box: if there is no address box the mask is empty
|
147 |
+
|
148 |
+
addressexists = [bool((~mask_bw).sum()) for mask_bw in masks_bw_arr]
|
149 |
+
|
150 |
+
# this is a list of CB names that may be used in address
|
151 |
+
|
152 |
+
CBnames = [
|
153 |
+
'цб рф',
|
154 |
+
'центральный банк',
|
155 |
+
'центрального банка',
|
156 |
+
'банк россии',
|
157 |
+
'банка россии',
|
158 |
+
]
|
159 |
+
|
160 |
+
# check which pages have address box addressed to CB
|
161 |
+
|
162 |
+
toCB = []
|
163 |
+
for i in range(len(addressexists)) :
|
164 |
+
iftoCB = False
|
165 |
+
for j in range(len(CBnames)) :
|
166 |
+
if addressexists[i] and CBnames[j] in texts[i].lower() :
|
167 |
+
iftoCB = True
|
168 |
+
break
|
169 |
+
|
170 |
+
toCB.append(iftoCB)
|
171 |
+
|
172 |
+
# build 3-level list: file -> doc -> page
|
173 |
+
|
174 |
+
docindices = []
|
175 |
+
doctypes = []
|
176 |
+
for i in range(len(fileindices)) :
|
177 |
+
docs = []
|
178 |
+
types = []
|
179 |
+
pages = []
|
180 |
+
doctype = False
|
181 |
+
for j in range(len(fileindices[i])) :
|
182 |
+
index = fileindices[i][j]
|
183 |
+
ifaddress = addressexists[index]
|
184 |
+
iftoCB = toCB[index]
|
185 |
+
if ifaddress :
|
186 |
+
if len(pages) > 0 :
|
187 |
+
docs.append(pages)
|
188 |
+
types.append(doctype)
|
189 |
+
|
190 |
+
pages = []
|
191 |
+
doctype = iftoCB
|
192 |
+
|
193 |
+
pages.append(index)
|
194 |
+
|
195 |
+
docs.append(pages)
|
196 |
+
types.append(doctype)
|
197 |
+
docindices.append(docs)
|
198 |
+
doctypes.append(types)
|
199 |
+
|
200 |
+
cropped = cropped_images
|
201 |
+
orig_size = cropped[0].size
|
202 |
+
masks = [mask.convert('L').resize((orig_size)) for mask in masks]
|
203 |
+
|
204 |
+
if verbose :
|
205 |
+
for i in range(len(masks)) :
|
206 |
+
img = np.array(masks[i])
|
207 |
+
out = np.array(cropped[i])
|
208 |
+
|
209 |
+
bw = cv2.inRange(img, 0, 12)
|
210 |
+
contours, hierarchy = cv2.findContours(bw, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
211 |
+
|
212 |
+
aaa = cv2.drawContours(out, contours, -1, (0, 255, 0), 5, cv2.LINE_AA, hierarchy, 1)
|
213 |
+
|
214 |
+
print()
|
215 |
+
print(pagenames[i])
|
216 |
+
print('Address exists :', addressexists[i])
|
217 |
+
print('To CB :', toCB[i])
|
218 |
+
# if addressflags[i] :
|
219 |
+
|
220 |
+
# if toCB[i] :
|
221 |
+
# print('text :', texts[i])
|
222 |
+
plt.imshow(Image.fromarray(aaa))
|
223 |
+
plt.show()
|
224 |
+
|
225 |
+
# print recognized text with marks: file - > doc # and doc type -> page number and text
|
226 |
+
|
227 |
+
docs_info = []
|
228 |
+
for i in range(len(docindices)) :
|
229 |
+
docs = []
|
230 |
+
if verbose :
|
231 |
+
print('File =', docfilenames[i])
|
232 |
+
|
233 |
+
for j in range(len(docindices[i])) :
|
234 |
+
doc = {}
|
235 |
+
doctype = 'Сопроводительное письмо'
|
236 |
+
if doctypes[i][j] :
|
237 |
+
doctype = 'Обращение'
|
238 |
+
|
239 |
+
doc['Тип документа'] = doctype
|
240 |
+
text = ''
|
241 |
+
if verbose :
|
242 |
+
print('Doc =', j, 'Type =', doctype)
|
243 |
+
|
244 |
+
index = docindices[i][j][0]
|
245 |
+
orginfo = ''
|
246 |
+
if toCB[index] :
|
247 |
+
orginfo = getOrgAddr(texts[index])
|
248 |
+
|
249 |
+
doc['Атрибуты'] = orginfo
|
250 |
+
|
251 |
+
for k in range(len(docindices[i][j])) :
|
252 |
+
index = docindices[i][j][k]
|
253 |
+
text += fulltexts[index]
|
254 |
+
if verbose :
|
255 |
+
print('Page =', pagenames[index])
|
256 |
+
print(fulltexts[index])
|
257 |
+
print('--- end of page ---')
|
258 |
+
print()
|
259 |
+
|
260 |
+
text = re.sub(r'\n +', r'\n', text)
|
261 |
+
text = re.sub(r'\n+', r'\n', text)
|
262 |
+
doc['Текст документа'] = text
|
263 |
+
docs.append(doc)
|
264 |
+
|
265 |
+
docs_info.append(docs)
|
266 |
+
|
267 |
+
for i in range(len(docindices)) :
|
268 |
+
for j in range(len(docindices[i])) :
|
269 |
+
for k in range(len(docindices[i][j])) :
|
270 |
+
index = docindices[i][j][k]
|
271 |
+
if toCB[index] :
|
272 |
+
orginfo = getOrgAddr(texts[index])
|
273 |
+
print(file)
|
274 |
+
print()
|
275 |
+
print(orginfo)
|
276 |
+
print()
|
277 |
+
# print(texts[index].strip())
|
278 |
+
# print()
|
279 |
+
# if toCB[index] :
|
280 |
+
# if verbose :
|
281 |
+
# print('Page =', pagenames[index])
|
282 |
+
# print(texts[index].strip())
|
283 |
+
# print('------------------------')
|
284 |
+
# companie
|
285 |
+
# print()
|
286 |
+
|
287 |
+
return docs_info
|
288 |
+
|
289 |
+
def processSingleFile(file) :
|
290 |
+
return processFiles([file])[0]
|
291 |
+
|
292 |
+
# file = 'test.pdf'
|
293 |
+
# docs_info = processSingleFile(file)
|
294 |
+
|
295 |
+
# docs_info =
|
296 |
+
# [
|
297 |
+
# {
|
298 |
+
# 'Имя поля' : 'Текст поля',
|
299 |
+
# ...
|
300 |
+
# },
|
301 |
+
# ...
|
302 |
+
# ]
|
303 |
+
# то есть это массив документов, содержащихся в файле, для каждого документа задан словарь 'Имя поля' : 'Текст поля' (сейчас там 2 поля для каждого документа)
|