Spaces:
Runtime error
Runtime error
| import logging | |
| import os | |
| from logging import Logger | |
| from typing import Annotated | |
| from fastapi import Depends | |
| from ntr_text_fragmentation import InjectionBuilder | |
| from sqlalchemy.orm import Session, sessionmaker | |
| from common.configuration import Configuration | |
| from common.db import session_factory | |
| from components.dbo.chunk_repository import ChunkRepository | |
| from components.embedding_extraction import EmbeddingExtractor | |
| from components.llm.common import LlmParams | |
| from components.llm.deepinfra_api import DeepInfraApi | |
| from components.services.dataset import DatasetService | |
| from components.services.dialogue import DialogueService | |
| from components.services.document import DocumentService | |
| from components.services.entity import EntityService | |
| from components.services.llm_config import LLMConfigService | |
| from components.services.llm_prompt import LlmPromptService | |
| def get_config() -> Configuration: | |
| return Configuration(os.environ.get('CONFIG_PATH', 'config_dev.yaml')) | |
| def get_db() -> sessionmaker: | |
| return session_factory | |
| def get_logger() -> Logger: | |
| return logging.getLogger(__name__) | |
| def get_embedding_extractor( | |
| config: Annotated[Configuration, Depends(get_config)], | |
| ) -> EmbeddingExtractor: | |
| return EmbeddingExtractor( | |
| config.db_config.search.vectorizer_path, | |
| config.db_config.search.device, | |
| ) | |
| def get_chunk_repository(db: Annotated[sessionmaker, Depends(get_db)]) -> ChunkRepository: | |
| """Получение репозитория чанков через DI.""" | |
| return ChunkRepository(db) | |
| def get_injection_builder( | |
| chunk_repository: Annotated[ChunkRepository, Depends(get_chunk_repository)], | |
| ) -> InjectionBuilder: | |
| return InjectionBuilder(chunk_repository) | |
| def get_entity_service( | |
| vectorizer: Annotated[EmbeddingExtractor, Depends(get_embedding_extractor)], | |
| chunk_repository: Annotated[ChunkRepository, Depends(get_chunk_repository)], | |
| config: Annotated[Configuration, Depends(get_config)], | |
| ) -> EntityService: | |
| """Получение сервиса для работы с сущностями через DI.""" | |
| return EntityService(vectorizer, chunk_repository, config) | |
| def get_dataset_service( | |
| entity_service: Annotated[EntityService, Depends(get_entity_service)], | |
| config: Annotated[Configuration, Depends(get_config)], | |
| db: Annotated[sessionmaker, Depends(get_db)], | |
| ) -> DatasetService: | |
| """Получение сервиса для работы с датасетами через DI.""" | |
| return DatasetService(entity_service, config, db) | |
| def get_document_service( | |
| dataset_service: Annotated[DatasetService, Depends(get_dataset_service)], | |
| config: Annotated[Configuration, Depends(get_config)], | |
| db: Annotated[sessionmaker, Depends(get_db)], | |
| ) -> DocumentService: | |
| return DocumentService(dataset_service, config, db) | |
| def get_llm_config_service(db: Annotated[Session, Depends(get_db)]) -> LLMConfigService: | |
| return LLMConfigService(db) | |
| def get_llm_service( | |
| config: Annotated[Configuration, Depends(get_config)], | |
| ) -> DeepInfraApi: | |
| llm_params = LlmParams( | |
| **{ | |
| "url": config.llm_config.base_url, | |
| "model": config.llm_config.model, | |
| "tokenizer": config.llm_config.tokenizer, | |
| "type": "deepinfra", | |
| "default": True, | |
| "predict_params": None, # должны задаваться при каждом запросе | |
| "api_key": os.environ.get(config.llm_config.api_key_env), | |
| "context_length": 128000, | |
| } | |
| ) | |
| return DeepInfraApi(params=llm_params) | |
| def get_llm_prompt_service(db: Annotated[Session, Depends(get_db)]) -> LlmPromptService: | |
| return LlmPromptService(db) | |
| def get_dialogue_service( | |
| config: Annotated[Configuration, Depends(get_config)], | |
| entity_service: Annotated[EntityService, Depends(get_entity_service)], | |
| dataset_service: Annotated[DatasetService, Depends(get_dataset_service)], | |
| llm_api: Annotated[DeepInfraApi, Depends(get_llm_service)], | |
| llm_config_service: Annotated[LLMConfigService, Depends(get_llm_config_service)], | |
| ) -> DialogueService: | |
| """Получение сервиса для работы с диалогами через DI.""" | |
| return DialogueService( | |
| config=config, | |
| entity_service=entity_service, | |
| dataset_service=dataset_service, | |
| llm_api=llm_api, | |
| llm_config_service=llm_config_service, | |
| ) | |