File size: 9,743 Bytes
2ab515e bbe913c 2ab515e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import { O as OpenAiService, U as UserToLlmRequestTypeEnum } from './OpenAiService-05Srl9E-.js';
import { existsSync, mkdirSync, writeFileSync } from 'fs';
import { resolve } from 'path';
import { d as private_env } from './shared-server-49TKSBDM.js';
import dns from 'node:dns';
dns.setDefaultResultOrder("ipv4first");
class DeepinfraService {
url = "";
llmParams;
apiKey;
constructor(params) {
this.url = params.url;
this.llmParams = params;
this.apiKey = private_env.DEEPINFRA_API_KEY;
}
_getHeaders() {
let headers = { "Content-Type": "application/json" };
if (this.apiKey) {
headers["Authorization"] = this.apiKey;
}
return headers;
}
async getModels() {
try {
const response = await fetch(`${this.url}/v1/openai/models`, {
method: "GET",
headers: this._getHeaders()
});
if (response.ok) {
let json = await response.json();
let result = json["data"].map((o) => o["id"]);
return result;
}
} catch (error) {
console.error("OpenAiService.getModels error:");
console.error(JSON.parse(JSON.stringify(error)));
}
return [];
}
async health() {
return "ok";
}
async tokenize(prompt, abortController) {
return null;
}
/**
* Не использовать пока что эту функцию, т.к. нет возможности убрать шаблон чата
* @param tokens
* @param abortController
* @returns
*/
async detokenize(tokens, abortController) {
return null;
}
/**
* Формирует запрос к ллм с параметрами и массивом сообщений
* @param prompt Промпт, который будет отправлен в ллм в сообщении с ролью user.
* @param requestType Тип запроса для выбора предопределенного системного промпта.
* @param systemPrompt Кастомный системный промпт для нестандартных случае. Например, "почемучки" (InvestigatorService) использует этот параметр. Сработает только при requestType = UserToLlmRequestTypeEnumю.Raw
* @returns
*/
async createRequest(prompt, requestType, systemPrompt) {
const llmParams = this.llmParams;
const request = {
"stream": true,
"model": llmParams.model
};
if (llmParams.predict_params?.stop != void 0 && llmParams.predict_params.stop.length > 0) {
const nonEmptyStop = llmParams.predict_params.stop.filter((o) => o != "");
if (nonEmptyStop.length > 0) {
request["stop"] = llmParams.predict_params.stop;
}
}
if (llmParams.predict_params?.n_predict != null) {
request["max_tokens"] = Number(llmParams.predict_params?.n_predict);
}
request["temperature"] = llmParams.predict_params?.temperature || 0;
if (llmParams.predict_params?.top_k != null) {
request["top_k"] = Number(llmParams.predict_params.top_k);
}
if (llmParams.predict_params?.top_p != null) {
request["top_p"] = Number(llmParams.predict_params.top_p);
}
if (llmParams.predict_params?.min_p != null) {
request["min_p"] = Number(llmParams.predict_params.min_p);
}
if (llmParams.predict_params?.seed != null) {
request["seed"] = Number(llmParams.predict_params.seed);
}
if (llmParams.predict_params?.n_keep != null) {
request["n_keep"] = Number(llmParams.predict_params.n_keep);
}
if (llmParams.predict_params?.cache_prompt != null) {
request["cache_prompt"] = Boolean(llmParams.predict_params.cache_prompt);
}
if (llmParams.predict_params?.repeat_penalty != null) {
request["repetition_penalty"] = Number(llmParams.predict_params.repeat_penalty);
}
if (llmParams.predict_params?.repeat_last_n != null) {
request["repeat_last_n"] = Number(llmParams.predict_params.repeat_last_n);
}
if (llmParams.predict_params?.presence_penalty != null) {
request["presence_penalty"] = Number(llmParams.predict_params.presence_penalty);
}
if (llmParams.predict_params?.frequency_penalty != null) {
request["frequency_penalty"] = Number(llmParams.predict_params.frequency_penalty);
}
request["messages"] = this.createMessages(prompt, requestType, systemPrompt);
return request;
}
createMessages(prompt, requestType, systemPrompt) {
const actualPrompt = this.applyLlmTemplateToPrompt(prompt);
let messages = [];
const finalSystemPrompt = this.selectSystemPrompt(requestType, systemPrompt);
if (finalSystemPrompt) {
messages.push({ role: "system", content: finalSystemPrompt });
}
messages.push({ role: "user", content: actualPrompt });
return messages;
}
selectSystemPrompt(requestType, systemPrompt) {
let prompt = "";
switch (requestType) {
case UserToLlmRequestTypeEnum.Regular:
prompt = this.llmParams.predict_params?.system_prompt || "";
break;
case UserToLlmRequestTypeEnum.Clarification:
prompt = this.llmParams.predict_params?.clarification_system_prompt || "";
break;
case UserToLlmRequestTypeEnum.ClarificationWithUserSelectedSearchResults:
prompt = this.llmParams.predict_params?.user_selected_sources_clarification_system_prompt || "";
break;
case UserToLlmRequestTypeEnum.UserSelectedSearchResults:
prompt = this.llmParams.predict_params?.user_selected_sources_system_prompt || "";
break;
case UserToLlmRequestTypeEnum.Raw:
prompt = systemPrompt || "";
break;
}
return prompt;
}
applyLlmTemplateToPrompt(prompt) {
let actualPrompt = prompt;
if (this.llmParams.template != void 0) {
actualPrompt = this.llmParams.template.replace("{{PROMPT}}", actualPrompt);
}
return actualPrompt;
}
async trimTokenizedText(sources, userRequest, { abortController }) {
return { result: sources, originalTokenCount: 0, slicedTokenCount: 0 };
}
predict({ requestType, abortController }) {
return async ({ prompt, systemPrompt }) => {
const request = await this.createRequest(prompt, requestType, systemPrompt);
console.log(`Predict request. Url: ${this.url}`);
console.log(`Messages: ${JSON.stringify(request["messages"])}`);
let r = await fetch(`${this.url}/v1/openai/chat/completions`, {
method: "POST",
headers: this._getHeaders(),
body: JSON.stringify(request),
signal: abortController.signal
});
if (!r.ok) {
throw new Error(`Failed to generate text: ${await r.text()}`);
}
const encoder = new TextDecoderStream();
const reader = await r.body?.pipeThrough(encoder).getReader();
return async function* () {
let tokenId = 0;
while (true) {
const out = await reader?.read() ?? { done: false, value: void 0 };
if (out.done) {
reader?.cancel();
break;
}
if (!out.value) {
reader?.cancel();
break;
}
let tokenValue = "";
if (out.value.startsWith("data: ")) {
try {
let isDone = false;
const result = out.value.trim().split(/\n/).map((line) => {
if (line.includes("data: [DONE]")) {
isDone = true;
return null;
}
try {
const parsedData = JSON.parse(line.replace(/^data: /, ""));
if (parsedData.choices && parsedData.choices.length > 0 && parsedData.choices[0]?.delta?.content) {
tokenValue += parsedData.choices[0]?.delta?.content;
}
} catch {
console.warn(`Invalid JSON string skipped: ${line}`);
}
}).filter((item) => item !== null);
if (isDone) {
reader?.cancel();
break;
}
} catch (e) {
console.log("Invalid llm response");
console.log(e);
}
}
yield {
token: {
id: tokenId++,
text: tokenValue ?? "",
logprob: 0,
special: false
},
generated_text: null,
details: null
};
}
}();
};
}
createLogFile(text, namePrefix = "") {
if (!private_env.LOGS_ROOT_FOLDER) {
return;
}
try {
const logsDirectory = resolve(private_env.LOGS_ROOT_FOLDER + "/llama");
if (!existsSync(logsDirectory)) {
mkdirSync(logsDirectory, {
recursive: true
});
}
const timestamp = (/* @__PURE__ */ new Date()).toISOString().replace(/[:.]/g, "");
const logFilePath = resolve(logsDirectory, `${namePrefix}${timestamp}.json`);
writeFileSync(logFilePath, text);
console.log(`Log file created: ${logFilePath}`);
} catch (e) {
console.log(`Failed to create log file in llama service`);
console.log(e);
}
}
}
class LlmApiServiceFactory {
static createVllm(params) {
return new OpenAiService(params);
}
static createDeepinfra(params) {
return new DeepinfraService(params);
}
static create(params) {
switch (params.type) {
case "vllm-openai":
return this.createVllm(params);
case "deepinfra":
return this.createDeepinfra(params);
default:
throw "Неизвестный тип LLM API";
}
}
}
export { LlmApiServiceFactory as L };
//# sourceMappingURL=LlmApiServiceFactory-9cJF8P5t.js.map
|