File size: 13,324 Bytes
9923f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab515e
9923f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab515e
9923f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab515e
9923f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab515e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import { existsSync, mkdirSync, writeFileSync } from 'fs';
import { resolve } from 'path';
import { d as private_env } from './shared-server-49TKSBDM.js';
import dns from 'node:dns';

var UserToLlmRequestTypeEnum = /* @__PURE__ */ ((UserToLlmRequestTypeEnum2) => {
  UserToLlmRequestTypeEnum2[UserToLlmRequestTypeEnum2["Regular"] = 0] = "Regular";
  UserToLlmRequestTypeEnum2[UserToLlmRequestTypeEnum2["Clarification"] = 10] = "Clarification";
  UserToLlmRequestTypeEnum2[UserToLlmRequestTypeEnum2["UserSelectedSearchResults"] = 20] = "UserSelectedSearchResults";
  UserToLlmRequestTypeEnum2[UserToLlmRequestTypeEnum2["ClarificationWithUserSelectedSearchResults"] = 30] = "ClarificationWithUserSelectedSearchResults";
  UserToLlmRequestTypeEnum2[UserToLlmRequestTypeEnum2["Raw"] = 40] = "Raw";
  return UserToLlmRequestTypeEnum2;
})(UserToLlmRequestTypeEnum || {});
dns.setDefaultResultOrder("ipv4first");
class OpenAiService {
  url = "";
  llmParams;
  constructor(params) {
    this.url = params.url;
    this.llmParams = params;
  }
  async getModels() {
    try {
      const response = await fetch(`${this.url}/v1/models`, {
        method: "GET",
        headers: {
          "Content-Type": "application/json"
        }
      });
      if (response.ok) {
        let json = await response.json();
        let result = json["data"].map((o) => o["id"]);
        return result;
      }
    } catch (error) {
      console.error("OpenAiService.getModels error:");
      console.error(JSON.parse(JSON.stringify(error)));
    }
    return [];
  }
  async health() {
    try {
      const response = await fetch(`${this.url}/health`, {
        method: "GET",
        headers: {
          "Content-Type": "application/json"
        }
      });
      if (response.ok) {
        return "ok";
      }
    } catch (error) {
      console.error("OpenAiService.health error:");
      console.error(JSON.parse(JSON.stringify(error)));
    }
    return "unavailable";
  }
  async tokenize(prompt, abortController) {
    const model = (await this.getModels())[0];
    const actualPrompt = this.applyLlmTemplateToPrompt(prompt);
    const requestData = {
      model,
      prompt: actualPrompt,
      add_special_tokens: false
    };
    const response = await fetch(`${this.url}/tokenize`, {
      method: "POST",
      headers: {
        "Content-Type": "application/json"
      },
      body: JSON.stringify(requestData),
      signal: abortController.signal
    });
    if (response.ok) {
      const data = await response.json();
      if (data.tokens) {
        return { tokens: data.tokens, maxLength: data.max_model_len };
      }
    } else if (response.status === 404) {
      console.log("Tokenization endpoint not found (404).");
    } else {
      console.log(`Failed to tokenize:${await response.text()}`);
    }
    return null;
  }
  /**
   * Не использовать пока что эту функцию, т.к. нет возможности убрать шаблон чата
   * @param tokens 
   * @param abortController 
   * @returns 
   */
  async detokenize(tokens, abortController) {
    const model = (await this.getModels())[0];
    tokens = tokens || [];
    const requestData = {
      model,
      tokens
    };
    const response = await fetch(`${this.url}/detokenize`, {
      method: "POST",
      headers: {
        "Content-Type": "application/json"
      },
      body: JSON.stringify(requestData),
      signal: abortController.signal
    });
    if (response.ok) {
      const data = await response.json();
      if (data.prompt !== void 0) {
        return data.prompt.trim();
      }
    } else if (response.status === 404) {
      console.log("Detokenization endpoint not found (404).");
    } else {
      console.log(`Failed to detokenize`);
      console.log(await response.json());
    }
    return null;
  }
  /**
   * Формирует запрос к ллм с параметрами и массивом сообщений
   * @param prompt Промпт, который будет отправлен в ллм в сообщении с ролью user.
   * @param requestType Тип запроса для выбора предопределенного системного промпта.
   * @param systemPrompt Кастомный системный промпт для нестандартных случае. Например, "почемучки" (InvestigatorService) использует этот параметр. Сработает только при requestType = UserToLlmRequestTypeEnumю.Raw
   * @returns 
   */
  async createRequest(prompt, requestType, systemPrompt) {
    const llmParams = this.llmParams;
    const model = (await this.getModels())[0];
    const request = {
      "stream": true,
      "model": model
    };
    if (llmParams.predict_params?.stop != void 0 && llmParams.predict_params.stop.length > 0) {
      const nonEmptyStop = llmParams.predict_params.stop.filter((o) => o != "");
      if (nonEmptyStop.length > 0) {
        request["stop"] = llmParams.predict_params.stop;
      }
    }
    if (llmParams.predict_params?.n_predict != null) {
      request["max_tokens"] = Number(llmParams.predict_params?.n_predict);
    }
    request["temperature"] = llmParams.predict_params?.temperature || 0;
    if (llmParams.predict_params?.top_k != null) {
      request["top_k"] = Number(llmParams.predict_params.top_k);
    }
    if (llmParams.predict_params?.top_p != null) {
      request["top_p"] = Number(llmParams.predict_params.top_p);
    }
    if (llmParams.predict_params?.min_p != null) {
      request["min_p"] = Number(llmParams.predict_params.min_p);
    }
    if (llmParams.predict_params?.seed != null) {
      request["seed"] = Number(llmParams.predict_params.seed);
    }
    if (llmParams.predict_params?.n_keep != null) {
      request["n_keep"] = Number(llmParams.predict_params.n_keep);
    }
    if (llmParams.predict_params?.cache_prompt != null) {
      request["cache_prompt"] = Boolean(llmParams.predict_params.cache_prompt);
    }
    if (llmParams.predict_params?.repeat_penalty != null) {
      request["repetition_penalty"] = Number(llmParams.predict_params.repeat_penalty);
    }
    if (llmParams.predict_params?.repeat_last_n != null) {
      request["repeat_last_n"] = Number(llmParams.predict_params.repeat_last_n);
    }
    if (llmParams.predict_params?.presence_penalty != null) {
      request["presence_penalty"] = Number(llmParams.predict_params.presence_penalty);
    }
    if (llmParams.predict_params?.frequency_penalty != null) {
      request["frequency_penalty"] = Number(llmParams.predict_params.frequency_penalty);
    }
    request["messages"] = this.createMessages(prompt, requestType, systemPrompt);
    return request;
  }
  createMessages(prompt, requestType, systemPrompt) {
    const actualPrompt = this.applyLlmTemplateToPrompt(prompt);
    let messages = [];
    const finalSystemPrompt = this.selectSystemPrompt(requestType, systemPrompt);
    if (finalSystemPrompt) {
      messages.push({ role: "system", content: finalSystemPrompt });
    }
    messages.push({ role: "user", content: actualPrompt });
    return messages;
  }
  selectSystemPrompt(requestType, systemPrompt) {
    let prompt = "";
    switch (requestType) {
      case UserToLlmRequestTypeEnum.Regular:
        prompt = this.llmParams.predict_params?.system_prompt || "";
        break;
      case UserToLlmRequestTypeEnum.Clarification:
        prompt = this.llmParams.predict_params?.clarification_system_prompt || "";
        break;
      case UserToLlmRequestTypeEnum.ClarificationWithUserSelectedSearchResults:
        prompt = this.llmParams.predict_params?.user_selected_sources_clarification_system_prompt || "";
        break;
      case UserToLlmRequestTypeEnum.UserSelectedSearchResults:
        prompt = this.llmParams.predict_params?.user_selected_sources_system_prompt || "";
        break;
      case UserToLlmRequestTypeEnum.Raw:
        prompt = systemPrompt || "";
        break;
    }
    return prompt;
  }
  applyLlmTemplateToPrompt(prompt) {
    let actualPrompt = prompt;
    if (this.llmParams.template != void 0) {
      actualPrompt = this.llmParams.template.replace("{{PROMPT}}", actualPrompt);
    }
    return actualPrompt;
  }
  async trimTokenizedText(sources, userRequest, { abortController }) {
    let sourcesTokensData = await this.tokenize(sources, abortController);
    const maxTokenCount = sourcesTokensData.maxLength;
    let systemPromptTokenCount = 0;
    if (this.llmParams.predict_params?.system_prompt) {
      systemPromptTokenCount = (await this.tokenize(this.llmParams.predict_params?.system_prompt, abortController))?.length || 0;
    }
    const originalTokenCount = sourcesTokensData?.tokens.length || -1;
    const auxTokensData = await this.tokenize(this.applyLlmTemplateToPrompt(this.llmParams.predict_params?.user_prompt || "") + userRequest, abortController);
    let maxLength = Number(maxTokenCount) - Number(this.llmParams.predict_params?.n_predict) - (auxTokensData?.tokens.length ?? 0) - systemPromptTokenCount;
    maxLength = maxLength < 0 ? 0 : maxLength;
    if (sourcesTokensData !== null && sourcesTokensData.tokens) {
      sourcesTokensData.tokens = sourcesTokensData.tokens.slice(0, maxLength);
      const detokenizedPrompt = await this.detokenize(sourcesTokensData.tokens, abortController);
      if (detokenizedPrompt !== null) {
        sources = detokenizedPrompt;
      } else {
        sources = sources.substring(0, maxLength);
      }
    } else {
      sources = sources.substring(0, maxLength);
    }
    return { result: sources, originalTokenCount, slicedTokenCount: sourcesTokensData?.tokens.length };
  }
  predict({ requestType, abortController }) {
    return async ({ prompt, systemPrompt }) => {
      const request = await this.createRequest(prompt, requestType, systemPrompt);
      console.log(`Predict request. Url: ${this.url}`);
      console.log(`Messages: ${JSON.stringify(request["messages"])}`);
      let r;
      while (true) {
        r = await fetch(`${this.url}/v1/chat/completions`, {
          method: "POST",
          headers: {
            "Content-Type": "application/json"
          },
          body: JSON.stringify(request),
          signal: abortController.signal
        });
        if (r.status === 404) {
          if (!private_env.LLM_API_404_RETRY_INTERVAL) {
            break;
          }
          console.log(`Received 404, retrying after ${private_env.LLM_API_404_RETRY_INTERVAL} seconds...`);
          await new Promise((resolve2) => setTimeout(resolve2, Number(private_env.LLM_API_404_RETRY_INTERVAL) * 1e3));
        } else {
          break;
        }
      }
      if (!r.ok) {
        throw new Error(`Failed to generate text: ${await r.text()}`);
      }
      const encoder = new TextDecoderStream();
      const reader = await r.body?.pipeThrough(encoder).getReader();
      return async function* () {
        let tokenId = 0;
        while (true) {
          const out = await reader?.read() ?? { done: false, value: void 0 };
          if (out.done) {
            reader?.cancel();
            break;
          }
          if (!out.value) {
            reader?.cancel();
            break;
          }
          let tokenValue = "";
          if (out.value.startsWith("data: ")) {
            try {
              let isDone = false;
              const result = out.value.trim().split(/\n/).map((line) => {
                if (line.includes("data: [DONE]")) {
                  isDone = true;
                }
                try {
                  const parsedData = JSON.parse(line.replace(/^data: /, ""));
                  if (parsedData.choices && parsedData.choices.length > 0 && parsedData.choices[0]?.delta?.content) {
                    tokenValue += parsedData.choices[0]?.delta?.content;
                  }
                } catch {
                }
              }).filter((item) => item !== null);
              if (isDone) {
                reader?.cancel();
                break;
              }
            } catch (e) {
              console.log("Invalid llm response");
              console.log(e);
            }
          }
          console.log(tokenValue);
          yield {
            token: {
              id: tokenId++,
              text: tokenValue ?? "",
              logprob: 0,
              special: false
            },
            generated_text: null,
            details: null
          };
        }
      }();
    };
  }
  createLogFile(text, namePrefix = "") {
    if (!private_env.LOGS_ROOT_FOLDER) {
      return;
    }
    try {
      const logsDirectory = resolve(private_env.LOGS_ROOT_FOLDER + "/llama");
      if (!existsSync(logsDirectory)) {
        mkdirSync(logsDirectory, {
          recursive: true
        });
      }
      const timestamp = (/* @__PURE__ */ new Date()).toISOString().replace(/[:.]/g, "");
      const logFilePath = resolve(logsDirectory, `${namePrefix}${timestamp}.json`);
      writeFileSync(logFilePath, text);
      console.log(`Log file created: ${logFilePath}`);
    } catch (e) {
      console.log(`Failed to create log file in llama service`);
      console.log(e);
    }
  }
}

export { OpenAiService as O, UserToLlmRequestTypeEnum as U };
//# sourceMappingURL=OpenAiService-05Srl9E-.js.map