Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -145,40 +145,20 @@ def magnitude_to_complex_spectrogram(magnitude_spectrogram):
|
|
145 |
|
146 |
def spectrogram_to_audio(magnitude_spectrogram):
|
147 |
# Perform inverse log scaling
|
148 |
-
|
149 |
-
magnitude_spectrogram = torch.expm1(magnitude_spectrogram)
|
150 |
-
if torch.isnan(magnitude_spectrogram).any():
|
151 |
-
raise ValueError("NaN values found in magnitude_spectrogram after expm1.")
|
152 |
-
except Exception as e:
|
153 |
-
raise ValueError(f"Error in expm1 operation: {e}")
|
154 |
|
155 |
# Convert magnitude-only spectrogram to complex format
|
156 |
-
|
157 |
-
complex_spectrogram = magnitude_to_complex_spectrogram(magnitude_spectrogram)
|
158 |
-
if torch.isnan(complex_spectrogram).any():
|
159 |
-
raise ValueError("Complex spectrogram contains NaN values after conversion.")
|
160 |
-
except Exception as e:
|
161 |
-
raise ValueError(f"Error in complex spectrogram creation: {e}")
|
162 |
|
163 |
# Inverse STFT to convert the spectrogram back to audio
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
raise ValueError(f"Error in istft operation: {e}")
|
170 |
-
|
171 |
-
# Normalize audio to the range [-1, 1] (standard audio range)
|
172 |
-
try:
|
173 |
-
if torch.max(torch.abs(audio)) != 0:
|
174 |
-
audio = audio / torch.max(torch.abs(audio))
|
175 |
-
except Exception as e:
|
176 |
-
raise ValueError(f"Error in audio normalization: {e}")
|
177 |
-
|
178 |
-
# Clip the audio to ensure it fits in the range [-1, 1]
|
179 |
audio = torch.clamp(audio, min=-1, max=1)
|
180 |
|
181 |
-
# Convert to 16-bit PCM format
|
182 |
audio = (audio * 32767).short()
|
183 |
|
184 |
return audio
|
|
|
145 |
|
146 |
def spectrogram_to_audio(magnitude_spectrogram):
|
147 |
# Perform inverse log scaling
|
148 |
+
magnitude_spectrogram = torch.expm1(magnitude_spectrogram)
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
# Convert magnitude-only spectrogram to complex format
|
151 |
+
complex_spectrogram = magnitude_to_complex_spectrogram(magnitude_spectrogram)
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
# Inverse STFT to convert the spectrogram back to audio
|
154 |
+
audio = torch.istft(complex_spectrogram, n_fft=n_fft, hop_length=hop_length)
|
155 |
+
|
156 |
+
# Normalize and clip the audio
|
157 |
+
if torch.max(torch.abs(audio)) != 0:
|
158 |
+
audio = audio / torch.max(torch.abs(audio))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
audio = torch.clamp(audio, min=-1, max=1)
|
160 |
|
161 |
+
# Convert to 16-bit PCM format
|
162 |
audio = (audio * 32767).short()
|
163 |
|
164 |
return audio
|