Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ import os
|
|
10 |
import random
|
11 |
import tempfile
|
12 |
import matplotlib.pyplot as plt
|
|
|
13 |
|
14 |
# Load your Pix2Pix model (make sure the path is correct)
|
15 |
model = load_model('./model_022600.h5', compile=False)
|
@@ -66,7 +67,7 @@ def save_spectrogram_image(spectrogram, name):
|
|
66 |
plt.imshow(spectrogram, aspect='auto', origin='lower', cmap='gray')
|
67 |
plt.axis('off')
|
68 |
|
69 |
-
#
|
70 |
temp_image_path = f"{name}_spectrogram.png"
|
71 |
plt.savefig(temp_image_path, bbox_inches='tight', pad_inches=0)
|
72 |
|
@@ -75,8 +76,8 @@ def save_spectrogram_image(spectrogram, name):
|
|
75 |
|
76 |
# Process the input image and convert to audio
|
77 |
def process_image(input_image):
|
78 |
-
#
|
79 |
-
image_name =
|
80 |
|
81 |
def load_image(image, size=(256, 256)):
|
82 |
image = image.resize(size)
|
@@ -102,13 +103,13 @@ def process_image(input_image):
|
|
102 |
# Modify the spectrogram randomly
|
103 |
img = modify_spectrogram(img)
|
104 |
|
105 |
-
# Save the modified spectrogram as an image, using the
|
106 |
spectrogram_image_path = save_spectrogram_image(img, image_name)
|
107 |
|
108 |
# Convert the spectrogram back to audio using librosa
|
109 |
wav = librosa.feature.inverse.mel_to_audio(img, sr=44100, n_fft=2048, hop_length=512)
|
110 |
|
111 |
-
# Save the audio file
|
112 |
audio_file_path = f"{image_name}_generated_audio.wav"
|
113 |
sf.write(audio_file_path, wav, samplerate=44100)
|
114 |
|
@@ -132,7 +133,7 @@ interface = gr.Interface(
|
|
132 |
inputs=gr.Image(type="pil"), # Input is an image
|
133 |
outputs=[gr.Image(type="filepath"), gr.Audio(type="filepath")], # Output both spectrogram image and audio file
|
134 |
title="Image to Audio Generator with Spectrogram Display",
|
135 |
-
description="Upload an image
|
136 |
)
|
137 |
|
138 |
# Launch the interface
|
|
|
10 |
import random
|
11 |
import tempfile
|
12 |
import matplotlib.pyplot as plt
|
13 |
+
import time # To generate unique filenames
|
14 |
|
15 |
# Load your Pix2Pix model (make sure the path is correct)
|
16 |
model = load_model('./model_022600.h5', compile=False)
|
|
|
67 |
plt.imshow(spectrogram, aspect='auto', origin='lower', cmap='gray')
|
68 |
plt.axis('off')
|
69 |
|
70 |
+
# Save the spectrogram image using the unique name
|
71 |
temp_image_path = f"{name}_spectrogram.png"
|
72 |
plt.savefig(temp_image_path, bbox_inches='tight', pad_inches=0)
|
73 |
|
|
|
76 |
|
77 |
# Process the input image and convert to audio
|
78 |
def process_image(input_image):
|
79 |
+
# Generate a unique name based on the current time
|
80 |
+
image_name = f"image_{int(time.time())}"
|
81 |
|
82 |
def load_image(image, size=(256, 256)):
|
83 |
image = image.resize(size)
|
|
|
103 |
# Modify the spectrogram randomly
|
104 |
img = modify_spectrogram(img)
|
105 |
|
106 |
+
# Save the modified spectrogram as an image, using the unique name
|
107 |
spectrogram_image_path = save_spectrogram_image(img, image_name)
|
108 |
|
109 |
# Convert the spectrogram back to audio using librosa
|
110 |
wav = librosa.feature.inverse.mel_to_audio(img, sr=44100, n_fft=2048, hop_length=512)
|
111 |
|
112 |
+
# Save the audio file, using the unique name
|
113 |
audio_file_path = f"{image_name}_generated_audio.wav"
|
114 |
sf.write(audio_file_path, wav, samplerate=44100)
|
115 |
|
|
|
133 |
inputs=gr.Image(type="pil"), # Input is an image
|
134 |
outputs=[gr.Image(type="filepath"), gr.Audio(type="filepath")], # Output both spectrogram image and audio file
|
135 |
title="Image to Audio Generator with Spectrogram Display",
|
136 |
+
description="Upload an image and get an audio file generated using Pix2Pix.",
|
137 |
)
|
138 |
|
139 |
# Launch the interface
|