musdfakoc commited on
Commit
af19cb5
·
verified ·
1 Parent(s): 99dc7e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -17
app.py CHANGED
@@ -11,7 +11,7 @@ from PIL import Image
11
  import os
12
 
13
  # Set device to 'cpu' or 'cuda' if available
14
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
15
 
16
  # Parameters
17
  sample_rate = 44100 # 44.1kHz stereo sounds
@@ -105,19 +105,6 @@ class Generator(nn.Module):
105
  return generated_spectrogram
106
 
107
 
108
-
109
- # Function to save audio
110
- def save_audio(audio, path, sample_rate=44100):
111
- # Ensure audio is in stereo by checking the channels
112
- if audio.dim() == 1:
113
- audio = audio.unsqueeze(0).repeat(2, 1) # Convert mono to stereo
114
- elif audio.size(0) == 1:
115
- audio = audio.repeat(2, 1) # Convert mono to stereo
116
-
117
- # Save audio to a file
118
- torchaudio.save(path, audio, sample_rate)
119
-
120
-
121
  # Function to generate and save audio from a test image using the pre-trained GAN model
122
  def test_model(generator, test_img_path, output_audio_path, device):
123
  # Load and preprocess test image
@@ -134,9 +121,6 @@ def test_model(generator, test_img_path, output_audio_path, device):
134
  # Convert the generated spectrogram to audio
135
  generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu()) # Remove batch dimension
136
 
137
- # Save the generated audio
138
- save_audio(generated_audio, output_audio_path)
139
-
140
  print(f"Generated audio saved to {output_audio_path}")
141
 
142
  # Load the pre-trained GAN model
 
11
  import os
12
 
13
  # Set device to 'cpu' or 'cuda' if available
14
+ device = torch.device('cpu')
15
 
16
  # Parameters
17
  sample_rate = 44100 # 44.1kHz stereo sounds
 
105
  return generated_spectrogram
106
 
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
  # Function to generate and save audio from a test image using the pre-trained GAN model
109
  def test_model(generator, test_img_path, output_audio_path, device):
110
  # Load and preprocess test image
 
121
  # Convert the generated spectrogram to audio
122
  generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu()) # Remove batch dimension
123
 
 
 
 
124
  print(f"Generated audio saved to {output_audio_path}")
125
 
126
  # Load the pre-trained GAN model