Spaces:
Sleeping
Sleeping
musdfakoc
commited on
Commit
·
d076b8a
1
Parent(s):
dfc82e0
Add model files
Browse files- app.py +190 -0
- gan_model.pth +3 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchaudio
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
import torchaudio.transforms as T
|
| 7 |
+
from torch import nn, optim
|
| 8 |
+
import torchvision.transforms as transforms
|
| 9 |
+
from torch.utils.data import Dataset, DataLoader
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# Set device to 'cpu' or 'cuda' if available
|
| 14 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
+
|
| 16 |
+
# Parameters
|
| 17 |
+
sample_rate = 44100 # 44.1kHz stereo sounds
|
| 18 |
+
n_fft = 4096 # FFT size
|
| 19 |
+
hop_length = 2048 # Hop length for STFT
|
| 20 |
+
duration = 5 # Duration of the sound files (5 seconds)
|
| 21 |
+
n_channels = 2 # Stereo sound
|
| 22 |
+
output_time_frames = duration * sample_rate // hop_length # Number of time frames in the spectrogram
|
| 23 |
+
|
| 24 |
+
stft_transform = T.Spectrogram(n_fft=n_fft, hop_length=hop_length, win_length=n_fft)
|
| 25 |
+
|
| 26 |
+
image_transform = transforms.Compose([
|
| 27 |
+
transforms.Resize((256, 256)),
|
| 28 |
+
transforms.ToTensor(),
|
| 29 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # Normalize to [-1, 1]
|
| 30 |
+
])
|
| 31 |
+
|
| 32 |
+
# Image Encoder (for the Generator)
|
| 33 |
+
class ImageEncoder(nn.Module):
|
| 34 |
+
def __init__(self):
|
| 35 |
+
super(ImageEncoder, self).__init__()
|
| 36 |
+
self.encoder = nn.Sequential(
|
| 37 |
+
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
|
| 38 |
+
nn.BatchNorm2d(64),
|
| 39 |
+
nn.ReLU(),
|
| 40 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
|
| 41 |
+
nn.BatchNorm2d(128),
|
| 42 |
+
nn.ReLU(),
|
| 43 |
+
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
|
| 44 |
+
nn.BatchNorm2d(256),
|
| 45 |
+
nn.ReLU(),
|
| 46 |
+
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
|
| 47 |
+
nn.BatchNorm2d(512),
|
| 48 |
+
nn.ReLU()
|
| 49 |
+
)
|
| 50 |
+
self.fc = nn.Linear(512 * 16 * 16, 512)
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
x = self.encoder(x)
|
| 54 |
+
x = x.view(x.size(0), -1)
|
| 55 |
+
return self.fc(x)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Sound Decoder (for the Generator)
|
| 59 |
+
class SoundDecoder(nn.Module):
|
| 60 |
+
def __init__(self, output_time_frames):
|
| 61 |
+
super(SoundDecoder, self).__init__()
|
| 62 |
+
self.fc = nn.Linear(512, 512 * 8 * 8)
|
| 63 |
+
|
| 64 |
+
self.decoder = nn.Sequential(
|
| 65 |
+
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
|
| 66 |
+
nn.BatchNorm2d(256),
|
| 67 |
+
nn.ReLU(),
|
| 68 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
|
| 69 |
+
nn.BatchNorm2d(128),
|
| 70 |
+
nn.ReLU(),
|
| 71 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
|
| 72 |
+
nn.BatchNorm2d(64),
|
| 73 |
+
nn.ReLU(),
|
| 74 |
+
nn.ConvTranspose2d(64, n_channels, kernel_size=4, stride=2, padding=1),
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Modify the upsample to exactly match the real spectrogram size (108 time frames)
|
| 78 |
+
self.upsample = nn.Upsample(size=(n_fft // 2 + 1, 108), mode='bilinear', align_corners=True)
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
x = self.fc(x)
|
| 82 |
+
x = x.view(x.size(0), 512, 8, 8)
|
| 83 |
+
x = self.decoder(x)
|
| 84 |
+
x = self.upsample(x)
|
| 85 |
+
# Debugging shape
|
| 86 |
+
print(f'Generated spectrogram shape: {x.shape}')
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
# Generator model
|
| 90 |
+
class Generator(nn.Module):
|
| 91 |
+
def __init__(self, output_time_frames):
|
| 92 |
+
super(Generator, self).__init__()
|
| 93 |
+
self.encoder = ImageEncoder()
|
| 94 |
+
self.decoder = SoundDecoder(output_time_frames)
|
| 95 |
+
|
| 96 |
+
def forward(self, img):
|
| 97 |
+
# Debugging: Image encoder
|
| 98 |
+
encoded_features = self.encoder(img)
|
| 99 |
+
print(f"Encoded features shape (from Image Encoder): {encoded_features.shape}")
|
| 100 |
+
|
| 101 |
+
# Debugging: Sound decoder
|
| 102 |
+
generated_spectrogram = self.decoder(encoded_features)
|
| 103 |
+
print(f"Generated spectrogram shape (from Sound Decoder): {generated_spectrogram.shape}")
|
| 104 |
+
|
| 105 |
+
return generated_spectrogram
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# Function to save audio
|
| 110 |
+
def save_audio(audio, path, sample_rate=44100):
|
| 111 |
+
# Ensure audio is in stereo by checking the channels
|
| 112 |
+
if audio.dim() == 1:
|
| 113 |
+
audio = audio.unsqueeze(0).repeat(2, 1) # Convert mono to stereo
|
| 114 |
+
elif audio.size(0) == 1:
|
| 115 |
+
audio = audio.repeat(2, 1) # Convert mono to stereo
|
| 116 |
+
|
| 117 |
+
# Save audio to a file
|
| 118 |
+
torchaudio.save(path, audio, sample_rate)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# Function to generate and save audio from a test image using the pre-trained GAN model
|
| 122 |
+
def test_model(generator, test_img_path, output_audio_path, device):
|
| 123 |
+
# Load and preprocess test image
|
| 124 |
+
test_img = Image.open(test_img_path).convert('RGB')
|
| 125 |
+
test_img = image_transform(test_img).unsqueeze(0).to(device) # Add batch dimension
|
| 126 |
+
|
| 127 |
+
# Generate sound spectrogram from the image
|
| 128 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
| 129 |
+
generated_spectrogram = generator(test_img)
|
| 130 |
+
|
| 131 |
+
# Debugging: Check generated spectrogram shape
|
| 132 |
+
print(f"Generated spectrogram shape: {generated_spectrogram.shape}")
|
| 133 |
+
|
| 134 |
+
# Convert the generated spectrogram to audio
|
| 135 |
+
generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu()) # Remove batch dimension
|
| 136 |
+
|
| 137 |
+
# Save the generated audio
|
| 138 |
+
save_audio(generated_audio, output_audio_path)
|
| 139 |
+
|
| 140 |
+
print(f"Generated audio saved to {output_audio_path}")
|
| 141 |
+
|
| 142 |
+
# Load the pre-trained GAN model
|
| 143 |
+
def load_gan_model(generator, model_path, device):
|
| 144 |
+
generator.load_state_dict(torch.load(model_path, map_location=device))
|
| 145 |
+
generator.eval() # Set the model to evaluation mode
|
| 146 |
+
return generator
|
| 147 |
+
|
| 148 |
+
# Convert magnitude-only spectrogram to complex format by assuming zero phase
|
| 149 |
+
def magnitude_to_complex_spectrogram(magnitude_spectrogram):
|
| 150 |
+
zero_phase = torch.zeros_like(magnitude_spectrogram)
|
| 151 |
+
complex_spectrogram = torch.stack([magnitude_spectrogram, zero_phase], dim=-1)
|
| 152 |
+
return complex_spectrogram
|
| 153 |
+
|
| 154 |
+
# Convert spectrogram back to audio using inverse STFT
|
| 155 |
+
def spectrogram_to_audio(magnitude_spectrogram):
|
| 156 |
+
magnitude_spectrogram = torch.expm1(magnitude_spectrogram)
|
| 157 |
+
complex_spectrogram = magnitude_to_complex_spectrogram(magnitude_spectrogram)
|
| 158 |
+
audio = torch.istft(complex_spectrogram, n_fft=n_fft, hop_length=hop_length)
|
| 159 |
+
return audio
|
| 160 |
+
|
| 161 |
+
# Function to generate audio from an uploaded image
|
| 162 |
+
def generate_audio_from_image(image):
|
| 163 |
+
test_img = image_transform(image).unsqueeze(0).to(device) # Preprocess image
|
| 164 |
+
|
| 165 |
+
# Generate sound spectrogram from the image using the loaded generator
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
generated_spectrogram = generator(test_img)
|
| 168 |
+
|
| 169 |
+
# Convert the generated spectrogram to audio
|
| 170 |
+
generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu())
|
| 171 |
+
|
| 172 |
+
# Convert audio tensor to numpy and return it for Gradio to handle
|
| 173 |
+
return generated_audio.numpy(), sample_rate
|
| 174 |
+
|
| 175 |
+
# Gradio Interface
|
| 176 |
+
def main():
|
| 177 |
+
global generator # Declare the generator object globally
|
| 178 |
+
# Instantiate your Generator model
|
| 179 |
+
generator = Generator(output_time_frames).to(device)
|
| 180 |
+
|
| 181 |
+
# Load the pre-trained model
|
| 182 |
+
model_path = '/Users/mustafakoc/Desktop/Workshop/istinye/local_intelligence/gan_model.pth' # Change this path
|
| 183 |
+
generator = load_gan_model(generator, model_path, device)
|
| 184 |
+
|
| 185 |
+
# Gradio interface: allow users to upload an image and generate audio
|
| 186 |
+
iface = gr.Interface(fn=generate_audio_from_image, inputs=gr.Image(type="pil"), outputs=gr.Audio(type="numpy", label="Generated Audio"))
|
| 187 |
+
iface.launch()
|
| 188 |
+
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
main()
|
gan_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f909a44210255efb3f4d85e91f28bdbcab9c9d098eb8c8bca61d6df41fa296d7
|
| 3 |
+
size 357763072
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchaudio
|
| 3 |
+
gradio
|
| 4 |
+
Pillow
|
| 5 |
+
torchvision
|