Spaces:
Running
Running
import gradio as gr | |
from ultralyticsplus import YOLO, render_result | |
import cv2 | |
import torch | |
# Verify torch version | |
print(f"Using torch version: {torch.__version__}") | |
# Load model with compatibility fix | |
def load_model(): | |
try: | |
model = YOLO('foduucom/plant-leaf-detection-and-classification') | |
model.overrides['conf'] = 0.25 | |
model.overrides['iou'] = 0.45 | |
model.overrides['agnostic_nms'] = False | |
model.overrides['max_det'] = 1000 | |
return model | |
except Exception as e: | |
raise RuntimeError("Error loading model. Please check the requirements versions.") from e | |
model = load_model() | |
def detect_leaves(image): | |
# Convert image format | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
cv2.imwrite('temp_image.jpg', image) | |
# Perform prediction | |
results = model.predict('temp_image.jpg') | |
# Process results | |
num_leaves = len(results[0].boxes) | |
render = render_result(model=model, image='temp_image.jpg', result=results[0]) | |
return render, num_leaves | |
# Create Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(), title="Leaf Detection") as demo: | |
gr.Markdown("## π Plant Leaf Detection & Counter") | |
gr.Markdown("Upload a plant image to analyze leaf count and species") | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
output_image = gr.Image(label="Detected Leaves", interactive=False) | |
leaf_count = gr.Number(label="Total Leaves Detected", precision=0) | |
submit_btn = gr.Button("Analyze Image", variant="primary") | |
submit_btn.click( | |
fn=detect_leaves, | |
inputs=[input_image], | |
outputs=[output_image, leaf_count] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_port=7860, show_error=True) |