File size: 8,067 Bytes
70d5cce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# from fastapi import FastAPI, File, UploadFile, HTTPException
# from fastapi.responses import JSONResponse
# import logging
# from ultralytics import YOLO
# import numpy as np
# import cv2
# from io import BytesIO
# from PIL import Image
# import base64
# import os

# # Setup logging
# logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# logger = logging.getLogger(__name__)




# app = FastAPI(title="Car Parts & Damage Detection API")



# # Log model file presence
# model_files = ["car_part_detector_model.pt", "damage_general_model.pt"]
# for model_file in model_files:
#     if os.path.exists(model_file):
#         logger.info(f"Model file found: {model_file}")
#     else:
#         logger.error(f"Model file missing: {model_file}")



# # Load YOLO models
# try:
#     logger.info("Loading car part model...")
#     car_part_model = YOLO("car_part_detector_model.pt")
#     logger.info("Car part model loaded successfully")
#     logger.info("Loading damage model...")
#     damage_model = YOLO("damage_general_model.pt")
#     logger.info("Damage model loaded successfully")
# except Exception as e:
#     logger.error(f"Failed to load models: {str(e)}")
#     raise RuntimeError(f"Failed to load models: {str(e)}")




# def image_to_base64(img: np.ndarray) -> str:
#     """Convert numpy image to base64 string."""
#     try:
#         _, buffer = cv2.imencode(".png", img)
#         return base64.b64encode(buffer).decode("utf-8")
#     except Exception as e:
#         logger.error(f"Error encoding image to base64: {str(e)}")
#         raise




# @app.post("/predict", summary="Run inference on an image for car parts and damage")
# async def predict(file: UploadFile = File(...)):
#     """Upload an image and get car parts and damage detection results."""
#     logger.info("Received image upload")
#     try:
#         contents = await file.read()
#         image = Image.open(BytesIO(contents)).convert("RGB")
#         img = np.array(image)
#         logger.info(f"Image loaded: shape={img.shape}")

#         blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8)
#         car_part_img = blank_img.copy()
#         damage_img = blank_img.copy()
#         car_part_text = "Car Parts: No detections"
#         damage_text = "Damage: No detections"

#         try:
#             logger.info("Running car part detection...")
#             car_part_results = car_part_model(img)[0]
#             if car_part_results.boxes:
#                 car_part_img = car_part_results.plot()[..., ::-1]
#                 car_part_text = "Car Parts:\n" + "\n".join(
#                     f"- {car_part_results.names[int(cls)]} ({conf:.2f})"
#                     for conf, cls in zip(car_part_results.boxes.conf, car_part_results.boxes.cls)
#                 )
#             logger.info("Car part detection completed")
#         except Exception as e:
#             car_part_text = f"Car Parts: Error: {str(e)}"
#             logger.error(f"Car part detection error: {str(e)}")

#         try:
#             logger.info("Running damage detection...")
#             damage_results = damage_model(img)[0]
#             if damage_results.boxes:
#                 damage_img = damage_results.plot()[..., ::-1]
#                 damage_text = "Damage:\n" + "\n".join(
#                     f"- {damage_results.names[int(cls)]} ({conf:.2f})"
#                     for conf, cls in zip(damage_results.boxes.conf, damage_results.boxes.cls)
#                 )
#             logger.info("Damage detection completed")
#         except Exception as e:
#             damage_text = f"Damage: Error: {str(e)}"
#             logger.error(f"Damage detection error: {str(e)}")

#         car_part_img_base64 = image_to_base64(car_part_img)
#         damage_img_base64 = image_to_base64(damage_img)
#         logger.info("Returning prediction results")
#         return JSONResponse({
#             "car_part_image": car_part_img_base64,
#             "car_part_text": car_part_text,
#             "damage_image": damage_img_base64,
#             "damage_text": damage_text
#         })
#     except Exception as e:
#         logger.error(f"Inference error: {str(e)}")
#         raise HTTPException(status_code=500, detail=f"Inference error: {str(e)}")






# @app.get("/", summary="Health check")
# async def root():
#     """Check if the API is running."""
#     logger.info("Health check accessed")
#     return {"message": "Car Parts & Damage Detection API is running"}



import gradio as gr
import numpy as np
import cv2
from PIL import Image
import base64
from io import BytesIO
from ultralytics import YOLO
import logging
import time



# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load damage detection model
try:
    logger.info("Loading damage model...")
    damage_model = YOLO("damage_general_model.pt")
    logger.info("Damage model loaded successfully")
except Exception as e:
    logger.error(f"Failed to load damage model: {str(e)}")
    raise RuntimeError(f"Failed to load damage model: {str(e)}")

def image_to_base64(img: np.ndarray) -> str:
    """Convert numpy image to base64 string."""
    try:
        _, buffer = cv2.imencode(".png", img)
        return base64.b64encode(buffer).decode("utf-8")
    except Exception as e:
        logger.error(f"Error encoding image to base64: {str(e)}")
        raise

def process_images(*images):
    """Process up to 5 images for damage detection."""
    if not any(images):
        return "Please upload at least one image.", []

    results = []
    timing_info = []
    for idx, img in enumerate(images):
        if img is None:
            continue
        try:
            start_image_time = time.time()  # Start timer for individual image
            logger.info(f"Processing image {idx + 1}")
            # Convert Gradio image input (PIL) to numpy
            img_np = np.array(img)
            blank_img = np.full((img_np.shape[0], img_np.shape[1], 3), 128, dtype=np.uint8)
            damage_text = f"Image {idx + 1} - Damage: No detections"
            damage_img = blank_img.copy()

            # Run damage detection
            logger.info(f"Running damage detection for image {idx + 1}...")
            damage_results = damage_model(img_np)[0]
            if damage_results.boxes:
                damage_img = damage_results.plot()[..., ::-1]
                damage_text = f"Image {idx + 1} - Damage:\n" + "\n".join(
                    f"- {damage_results.names[int(cls)]} ({conf:.2f})"
                    for conf, cls in zip(damage_results.boxes.conf, damage_results.boxes.cls)
                )
            logger.info(f"Damage detection completed for image {idx + 1}")

            # Convert result image to PIL for Gradio display
            damage_pil = Image.fromarray(damage_img)
            results.append((damage_pil, damage_text))
        except Exception as e:
            logger.error(f"Error processing image {idx + 1}: {str(e)}")
            results.append((None, f"Image {idx + 1} - Error: {str(e)}"))

    # Calculate total processing time
    total_time = time.time() - start_image_time
    timing_info.append(f"Total processing time: {total_time:.2f} seconds")

    return "Damage detection completed.", results, "\n".join(timing_info)

# Define Gradio interface
iface = gr.Interface(
    fn=process_images,
    inputs=[
        gr.Image(type="pil", label="Upload Image 1"),
        gr.Image(type="pil", label="Upload Image 2"),
        gr.Image(type="pil", label="Upload Image 3"),
        gr.Image(type="pil", label="Upload Image 4"),
        gr.Image(type="pil", label="Upload Image 5"),
    ],
    outputs=[
        gr.Textbox(label="Status"),
        gr.Gallery(label="Detected Damage Images and Results", columns=2),
    ],
    title="Car Damage Detection",
    description="Upload up to 5 images to detect car damage. Results will display annotated images and detected damage details.",
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()