Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- Dockerfile +23 -0
- app.py +17 -0
- chainlit.md +43 -0
- rag_dspy.py +74 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hugging Face Spaces Chainlit template
|
2 |
+
FROM python:3.11-slim
|
3 |
+
|
4 |
+
# Install system dependencies
|
5 |
+
RUN apt-get update && apt-get install -y \
|
6 |
+
git curl build-essential && \
|
7 |
+
rm -rf /var/lib/apt/lists/*
|
8 |
+
|
9 |
+
# Set working directory
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
# Install Python deps
|
13 |
+
COPY requirements.txt .
|
14 |
+
RUN pip install --upgrade pip && pip install -r requirements.txt
|
15 |
+
|
16 |
+
# Copy source
|
17 |
+
COPY . .
|
18 |
+
|
19 |
+
# Expose Chainlit port
|
20 |
+
EXPOSE 7860
|
21 |
+
|
22 |
+
# Launch Chainlit app
|
23 |
+
CMD ["chainlit", "run", "app.py", "-h", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import chainlit as cl
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from rag_dspy import MedicalAnswer, rerank_with_colbert, MedicalRAG
|
5 |
+
import dspy
|
6 |
+
from dspy_qdrant import QdrantRM
|
7 |
+
from qdrant_client import QdrantClient
|
8 |
+
|
9 |
+
# Configure Chainlit
|
10 |
+
rag_chain = MedicalRAG()
|
11 |
+
|
12 |
+
@cl.on_message
|
13 |
+
async def main(message: cl.Message):
|
14 |
+
user_question = message.content
|
15 |
+
result = rag_chain.forward(user_question)
|
16 |
+
result = result.final_answer
|
17 |
+
await cl.Message(content=result).send()
|
chainlit.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Medical QA Chatbot
|
2 |
+
|
3 |
+
This is a Chain-of-Thought powered medical chatbot that:
|
4 |
+
|
5 |
+
- Retrieves answers from a Qdrant Cloud vector DB using dense + ColBERT multivectors
|
6 |
+
- Uses Stanford DSPy to reason step-by-step with retrieved context
|
7 |
+
- Supports traceable source highlighting in Chainlit
|
8 |
+
- Deployable on Hugging Face Spaces via Docker
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
## How to Deploy
|
13 |
+
|
14 |
+
- Add your `OPENAI_API_KEY` as a secret environment variable in Hugging Face Space settings
|
15 |
+
- Make sure `qdrant-client` points to your Qdrant Cloud instance in `rag_dspy.py`
|
16 |
+
- Run the Space
|
17 |
+
|
18 |
+
## Sample Questions
|
19 |
+
|
20 |
+
### General Medical Knowledge
|
21 |
+
- What are the most common symptoms of lupus?
|
22 |
+
|
23 |
+
- How is type 2 diabetes usually managed in adults?
|
24 |
+
|
25 |
+
- What is the difference between viral and bacterial pneumonia?
|
26 |
+
|
27 |
+
### Treatment & Medication
|
28 |
+
- What are the first-line medications for treating hypertension?
|
29 |
+
|
30 |
+
- How does metformin work to lower blood sugar?
|
31 |
+
|
32 |
+
### Diagnosis & Tests
|
33 |
+
- What diagnostic tests are used to detect rheumatoid arthritis?
|
34 |
+
|
35 |
+
- When is a colonoscopy recommended for cancer screening?
|
36 |
+
|
37 |
+
### Hospital & Patient Care
|
38 |
+
- What are the psychosocial challenges faced by cancer patients?
|
39 |
+
|
40 |
+
- How do hospitals manage patients with multidrug-resistant infections?
|
41 |
+
|
42 |
+
### Clinical Guidelines / Rare Topics
|
43 |
+
- What is the recommended treatment for acute myocardial infarction in elderly patients?
|
rag_dspy.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# rag_dspy.py
|
2 |
+
|
3 |
+
import dspy
|
4 |
+
from dspy_qdrant import QdrantRM
|
5 |
+
from qdrant_client import QdrantClient, models
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
# DSPy setup
|
11 |
+
lm = dspy.LM("gpt-4", max_tokens=512,api_key=os.environ.get("OPENAI_API_KEY"))
|
12 |
+
client = QdrantClient(url=os.environ.get("QDRANT_CLOUD_URL"), api_key=os.environ.get("QDRANT_API_KEY"))
|
13 |
+
collection_name = "medical_chat_bot"
|
14 |
+
rm = QdrantRM(
|
15 |
+
qdrant_collection_name=collection_name,
|
16 |
+
qdrant_client=client,
|
17 |
+
vector_name="dense", # <-- MATCHES your vector field in upsert
|
18 |
+
document_field="passage_text", # <-- MATCHES your payload field in upsert
|
19 |
+
k=20)
|
20 |
+
|
21 |
+
dspy.settings.configure(lm=lm, rm=rm)
|
22 |
+
|
23 |
+
# Manual reranker using ColBERT multivector field
|
24 |
+
# Manual reranker using Qdrant’s native prefetch + ColBERT query
|
25 |
+
def rerank_with_colbert(query_text):
|
26 |
+
from fastembed import TextEmbedding, LateInteractionTextEmbedding
|
27 |
+
|
28 |
+
# Encode query once with both models
|
29 |
+
dense_model = TextEmbedding("BAAI/bge-small-en")
|
30 |
+
colbert_model = LateInteractionTextEmbedding("colbert-ir/colbertv2.0")
|
31 |
+
|
32 |
+
dense_query = list(dense_model.embed(query_text))[0]
|
33 |
+
colbert_query = list(colbert_model.embed(query_text))[0]
|
34 |
+
|
35 |
+
# Combined query: retrieve with dense, rerank with ColBERT
|
36 |
+
results = client.query_points(
|
37 |
+
collection_name=collection_name,
|
38 |
+
prefetch=models.Prefetch(
|
39 |
+
query=dense_query,
|
40 |
+
using="dense"
|
41 |
+
),
|
42 |
+
query=colbert_query,
|
43 |
+
using="colbert",
|
44 |
+
limit=5,
|
45 |
+
with_payload=True
|
46 |
+
)
|
47 |
+
|
48 |
+
points = results.points
|
49 |
+
docs = []
|
50 |
+
|
51 |
+
for point in points:
|
52 |
+
docs.append(point.payload['passage_text'])
|
53 |
+
|
54 |
+
return docs
|
55 |
+
|
56 |
+
# DSPy Signature and Module
|
57 |
+
class MedicalAnswer(dspy.Signature):
|
58 |
+
question = dspy.InputField(desc="The medical question to answer")
|
59 |
+
context = dspy.OutputField(desc="The answer to the medical question")
|
60 |
+
final_answer = dspy.OutputField(desc="The answer to the medical question")
|
61 |
+
|
62 |
+
class MedicalRAG(dspy.Module):
|
63 |
+
def __init__(self):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
def forward(self, question):
|
67 |
+
reranked_docs = rerank_with_colbert(question)
|
68 |
+
|
69 |
+
context_str = "\n".join(reranked_docs)
|
70 |
+
|
71 |
+
return dspy.ChainOfThought(MedicalAnswer)(
|
72 |
+
question=question,
|
73 |
+
context=context_str
|
74 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==3.6.0
|
2 |
+
chainlit
|
3 |
+
git+https://github.com/stanfordnlp/dspy.git
|
4 |
+
python-dotenv==1.1.0
|
5 |
+
cachetools
|
6 |
+
cloudpickle
|
7 |
+
qdrant-client[fastembed]>=1.14.2
|
8 |
+
dspy-qdrant
|