File size: 9,026 Bytes
68091f2
 
949d5bc
68091f2
949d5bc
68091f2
 
 
 
 
949d5bc
cc6796c
68091f2
 
 
 
cc6796c
68091f2
 
 
949d5bc
68091f2
65217f3
 
 
 
 
68091f2
57b2d01
68091f2
57b2d01
65217f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68091f2
 
57b2d01
65217f3
57b2d01
68091f2
65217f3
 
 
 
 
68091f2
 
57b2d01
65217f3
57b2d01
68091f2
57b2d01
68091f2
57b2d01
68091f2
 
 
57b2d01
68091f2
 
 
 
57b2d01
 
68091f2
 
57b2d01
68091f2
57b2d01
68091f2
 
 
57b2d01
68091f2
 
 
 
 
 
 
57b2d01
68091f2
 
57b2d01
 
68091f2
 
57b2d01
68091f2
 
 
 
 
 
 
 
 
 
57b2d01
68091f2
 
 
 
 
 
65217f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68091f2
949d5bc
65217f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98607a5
65217f3
 
98607a5
65217f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68091f2
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6796c
65217f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68091f2
 
bfbdf32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gradio as gr
from rag_dspy import MedicalRAG

rag_chain = MedicalRAG()

sample_questions = [
    "What are the most common symptoms of lupus?",
    "How is type 2 diabetes usually managed in adults?",
    "What are the first-line medications for treating hypertension?",
]

def qa_bot(user_question, history, min_year, max_year, specialty):
    history = history or []
    if not user_question.strip():
        return history, history
    history.append({"role": "user", "content": user_question})
    result = rag_chain.forward(user_question, min_year, max_year, specialty)
    answer = result.final_answer
    history.append({"role": "assistant", "content": answer})
    return history, history

css = """
html, body, #root, .gradio-container {
    margin: 0 !important;
    padding: 0 !important;
}

body {
    background: #f5f7fa !important;
    font-family: 'Segoe UI', 'Roboto', 'Helvetica Neue', Arial, sans-serif !important;
    color: #212529 !important;
    margin: 0;
    padding: 0;
}
#main-row {
    display: flex;
    flex-direction: row;
    width: 100vw;
    min-height: 100vh;
    box-sizing: border-box;
    gap: 0;
}
#readme-col {
    flex: 1 1 0;
    background: #f5f7fa;
    padding: 0 0 0 0;
    border-right: 1px solid #e3e7ef;
    height: 108vh;
    overflow-y: auto;
    box-sizing: border-box;
}
#readme-markdown {
    border-radius: 5px;
    box-shadow: 0 4px 24px rgba(60, 80, 120, 0.07), 0 1.5px 4px rgba(60, 80, 120, 0.05);
    padding: 32px 32px 24px 32px;
    margin: 0;
    border: none;
    overflow-y: auto;
    box-sizing: border-box;
    flex: 1;
}
#main-card {
    background: #fff !important;
    border-radius: 5px;
    box-shadow: 0 4px 24px rgba(60, 80, 120, 0.07), 0 1.5px 4px rgba(60, 80, 120, 0.05);
    padding: 32px 32px 24px 32px;
    margin: 0;
    border: none;
    overflow-y: auto;
    box-sizing: border-box;
    flex: 1;
}
#chatbot {
    background: #f9fbfd !important;
    border-radius: 5px !important;
    box-shadow: 0 2px 8px rgba(60, 80, 120, 0.06);
    margin-bottom: 18px !important;
    border: 1px solid #e3e7ef !important;
    padding: 16px !important;
    color: #212529 !important;
}
.suggestion-btn {
    margin: 0 12px 18px 0 !important;
    background: #eaf4ff !important;
    color: #2563eb !important;
    border-radius: 10px !important;
    font-weight: 500 !important;
    font-size: 1rem !important;
    border: 1.5px solid #bcdfff !important;
    transition: background 0.2s, color 0.2s, border-color 0.2s;
}
.suggestion-btn:hover {
    background: #d2eaff !important;
    color: #174ea6 !important;
    border-color: #2563eb !important;
}
#medical-title {
    text-align: center;
    color: #2563eb;
    font-size: 2.3rem;
    font-weight: 700;
    margin-bottom: 18px;
    letter-spacing: 1px;
}
#user-input {
    border-radius: 10px !important;
    border: 1.5px solid #bcdfff !important;
    padding: 10px 16px !important;
    font-size: 1.1rem !important;
    background: #fff !important;
    color: #212529 !important;
}
#user-input::placeholder {
    color: #8ca0b3 !important;
    opacity: 1 !important;
}
#submit-btn {
    background: linear-gradient(90deg, #2563eb 0%, #38bdf8 100%) !important;
    color: #fff !important;
    border-radius: 10px !important;
    font-size: 1.3rem !important;
    min-width: 56px;
    min-height: 44px;
    border: none !important;
    box-shadow: 0 2px 8px rgba(60, 80, 120, 0.07);
    transition: background 0.2s;
}
#submit-btn:hover {
    background: linear-gradient(90deg, #174ea6 0%, #0ea5e9 100%) !important;
    color: #fff !important;
}
@media (max-width: 900px) {
    #main-row {
        flex-direction: column;
        width: 100vw;
    }
    #readme-col, #main-card {
        min-width: 0 !important;
        max-width: 100vw !important;
        border-radius: 0 !important;
        height: auto !important;
    }
    #readme-markdown {
        padding: 24px 12px 16px 12px;
    }
}
@media (max-width: 600px) {
    #main-row {
        flex-direction: column;
        width: 100vw;
    }
    #readme-col, #main-card {
        min-width: 0 !important;
        max-width: 100vw !important;
        border-radius: 0 !important;
        height: auto !important;
    }
    #readme-markdown {
        padding: 14px 6px 10px 6px;
        font-size: 0.98rem;
    }
    #main-card {
        padding: 16px 6px 10px 6px !important;
    }
}
"""

readme_content = """
#  Medical QA Chatbot

This is a Chain-of-Thought powered medical chatbot that:

- Retrieves answers from a Qdrant Cloud vector DB 
- Uses Stanford DSPy to reason step-by-step 
- Supports filtering by year and specialty
- Uses dense + ColBERT multivectors for retrieval

---

##  How to Use

- Add your `OPENAI_API_KEY` to `.env`
- Add your `QDRANT_API_KEY` to `.env`
- Add your `QDRANT_CLOUD_URL` to `.env`
- Make sure `qdrant-client` points to your
 Qdrant Cloud instance in `rag_dspy.py`
- Run `python app.py`

## Sample Questions 

### General Medical Knowledge
- What are the most common symptoms of lupus?

- How is type 2 diabetes usually managed in adults?

- What is the difference between viral and bacterial pneumonia?

### Treatment & Medication
- What are the first-line medications for treating hypertension?

- How does metformin work to lower blood sugar?

"""
def suggestion_click(q, history, min_year, max_year, specialty):
    return qa_bot(q, history, min_year, max_year, specialty)

with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as demo:
    
    with gr.Row(elem_id="main-row"):
        with gr.Column(elem_id="main-card"):
            chatbot = gr.Chatbot(label="", elem_id="chatbot", type="messages", height=300)
            state = gr.State([])
            specialty_options = [
                "Rheumatology", "Psychiatry", "Pulmonology & Respiratory Medicine", "Nephrology", "Public Health & Epidemiology",
                "Medical Research & Methodology", "Pharmacy & Pharmacology", "Hematology", "Oncology", "Medical Ethics & Law",
                "Medical Technology & Informatics", "Infectious Disease", "Basic Medical Sciences", "Allergology", "Geriatrics",
                "Cardiology", "Gastroenterology & Hepatology", "General Surgery", "General Pediatrics", "Endocrinology & Metabolism",
                "Vascular Surgery", "Radiology & Imaging", "Obstetrics & Gynecology", "Orthopedic Surgery", "Neurology",
                "Family Medicine & Primary Care", "Psychology & Behavioral Health", "Otorhinolaryngology (ENT)", "General Internal Medicine",
                "Anesthesiology", "Physical & Rehabilitation Medicine", "Medical Education", "Healthcare Administration & Management",
                "Non-Medical Sciences & Disciplines", "Dermatology", "Critical Care & Intensive Care", "Urology", "Complementary & Alternative Medicine",
                "Cardiothoracic Surgery", "Neurosurgery", "Pediatric Subspecialties", "Occupational & Environmental Health", "Ophthalmology",
                "Emergency Medicine", "Dental & Oral Medicine", "Biomedical Engineering", "Pathology & Laboratory Medicine", "Transplant Surgery",
                "Preventive Medicine", "Genetics", "Nursing", "Allied Health Professions", "Plastic & Reconstructive Surgery", "Others",
                "Toxicology", "General Medicine"
            ]
            specialty_dropdown = gr.Dropdown(choices=specialty_options, value="General Medicine", label="Specialty", scale=2, elem_id="specialty-dropdown")
            with gr.Row():
                min_year_slider = gr.Slider(minimum=1793, maximum=2021, value=1990, step=1, label="Min Year", scale=2, elem_id="min-year-slider")
                max_year_slider = gr.Slider(minimum=1793, maximum=2021, value=2021, step=1, label="Max Year", scale=2, elem_id="max-year-slider")
            
            with gr.Row():
                user_input = gr.Textbox(placeholder="Type a medical question...", show_label=False, lines=1, scale=8, elem_id="user-input")
                submit_btn = gr.Button(value="➤", scale=1, elem_id="submit-btn")
            
            with gr.Row():
                suggestion_buttons = []
                for i, q in enumerate(sample_questions):
                    btn = gr.Button(q, elem_id=f"suggestion-{i}", elem_classes=["suggestion-btn"])
                    suggestion_buttons.append(btn)
                    
        submit_btn.click(qa_bot, inputs=[user_input, state, min_year_slider, max_year_slider, specialty_dropdown], outputs=[chatbot, state])
        user_input.submit(qa_bot, inputs=[user_input, state, min_year_slider, max_year_slider, specialty_dropdown], outputs=[chatbot, state])
        for btn, q in zip(suggestion_buttons, sample_questions):
            btn.click(suggestion_click, inputs=[gr.State(q), state, min_year_slider, max_year_slider, specialty_dropdown], outputs=[chatbot, state])
       
        with gr.Column(elem_id="readme-col"):
            gr.Markdown(readme_content, elem_id="readme-markdown")
            
            
            
            
if __name__ == "__main__":
    demo.launch()