File size: 14,611 Bytes
408b814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68c10a7
408b814
 
 
 
9104f63
68c10a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
9104f63
 
 
408b814
9104f63
a2240e3
 
 
 
68c10a7
a2240e3
 
 
 
 
 
68c10a7
a2240e3
 
 
 
 
 
 
 
 
 
 
9104f63
a2240e3
9104f63
408b814
68c10a7
 
 
 
 
 
 
 
 
 
 
 
408b814
 
9104f63
a2240e3
9104f63
408b814
 
8d7241f
 
 
 
408b814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68c10a7
 
 
 
 
 
 
408b814
68c10a7
 
 
 
 
 
 
 
 
 
 
408b814
 
 
8d7241f
 
 
 
 
 
 
408b814
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import grpc from '@grpc/grpc-js';
import protoLoader from '@grpc/proto-loader';
import {AutoRouter, cors, error, json} from 'itty-router';
import dotenv from 'dotenv';
import path,{ dirname } from 'path';
import { fileURLToPath } from 'url';
import {createServerAdapter} from '@whatwg-node/server';
import {createServer} from 'http';

// 加载环境变量
dotenv.config();
// 获取当前文件的目录路径(ESM 方式)
const __dirname = dirname(fileURLToPath(import.meta.url));
// 初始化配置
class Config {
        constructor() {
                this.API_PREFIX = process.env.API_PREFIX || '/';
                this.API_KEY = process.env.API_KEY || '';
                this.MAX_RETRY_COUNT = process.env.MAX_RETRY_COUNT || 3;
                this.RETRY_DELAY = process.env.RETRY_DELAY || 5000;
                this.COMMON_GRPC = 'runtime-native-io-vertex-inference-grpc-service-lmuw6mcn3q-ul.a.run.app';
                this.COMMON_PROTO = path.join(__dirname,'..', 'protos', 'VertexInferenceService.proto')
                this.GPT_GRPC = 'runtime-native-io-gpt-inference-grpc-service-lmuw6mcn3q-ul.a.run.app';
                this.GPT_PROTO = path.join(__dirname,'..', 'protos', 'GPTInferenceService.proto')
                this.PORT = process.env.PORT || 8787;
        }
}
class GRPCHandler {
        constructor(protoFilePath) {
                // 动态加载传入的 .proto 文件路径
                this.packageDefinition = protoLoader.loadSync(protoFilePath, {
                        keepCase: true,
                        longs: String,
                        enums: String,
                        defaults: true,
                        oneofs: true
                });
        }
}
const config = new Config();
// 中间件
// 添加运行回源
const { preflight, corsify } = cors({
	origin: '*',
	allowMethods: '*',
	exposeHeaders: '*',
});

// 添加认证
const withAuth = (request) => {
	if (config.API_KEY) {
		const authHeader = request.headers.get('Authorization');
		if (!authHeader || !authHeader.startsWith('Bearer ')) {
			return error(401, 'Unauthorized: Missing or invalid Authorization header');
		}
		const token = authHeader.substring(7);
		if (token !== config.API_KEY) {
			return error(403, 'Forbidden: Invalid API key');
		}
	}
};

// 返回运行信息
const logger = (res, req) => {
	console.log(req.method, res.status, req.url, Date.now() - req.start, 'ms');
};

// 定义模型映射信息
const MODEL_INFO = {
    "claude-3-sonnet-20240229": {
        "provider": "anthropic",
        "mapping": "claude-3-sonnet@20240229"
    },
    "claude-3-opus-20240229": {
        "provider": "anthropic",
        "mapping": "claude-3-opus@20240229"
    },
    "claude-3-haiku-20240307": {
        "provider": "anthropic",
        "mapping": "claude-3-haiku@20240307"
    },
    "claude-3-5-sonnet-20240620": {
        "provider": "anthropic",
        "mapping": "claude-3-5-sonnet@20240620"
    },
    "gpt-4o-mini": {
        "provider": "openai",
        "mapping": "gpt-4o-mini"
    },
    "gpt-4o": {
        "provider": "openai",
        "mapping": "gpt-4o"
    },
    "gpt-4-turbo": {
        "provider": "openai",
        "mapping": "gpt-4-turbo"
    },
    "gpt-4": {
        "provider": "openai",
        "mapping": "gpt-4"
    },
    "gpt-3.5-turbo": {
        "provider": "openai",
        "mapping": "gpt-3.5-turbo"
    },
    "gemini-1.5-pro": {
        "provider": "google",
        "mapping": "gemini-1.5-pro"
    },
    "gemini-1.5-flash": {
        "provider": "google",
        "mapping": "gemini-1.5-flash"
    },
    "chat-bison": {
        "provider": "pieces-os",
        "mapping": "chat-bison"
    },
    "codechat-bison": {
        "provider": "pieces-os",
        "mapping": "codechat-bison"
    }
};

// 定义路由
const router = AutoRouter({
  before: [preflight], // 只保留 CORS preflight 检查
  missing: () => error(404, '404 not found.'),
  finally: [corsify, logger],
});

// 根路由
router.get('/', () => json({
    service: "AI Chat Completion Proxy",
    usage: {
        endpoint: "/v1/chat/completions", 
        method: "POST",
        headers: {
            "Content-Type": "application/json",
            "Authorization": "Bearer YOUR_API_KEY"
        },
        body: {
            model: "One of: " + Object.keys(MODEL_INFO).join(", "),
            messages: [
                { role: "system", content: "You are a helpful assistant." },
                { role: "user", content: "Hello, who are you?" }
            ],
            stream: false,
            temperature: 0.7,
            top_p: 1
        }
    },
    note: "Replace YOUR_API_KEY with your actual API key."
}));

// models 路由
router.get(config.API_PREFIX + '/v1/models', withAuth, () =>
    json({
        object: "list",
        data: Object.entries(MODEL_INFO).map(([modelId, info]) => ({
            id: modelId,
            object: "model",
            created: Date.now(),
            owned_by: "pieces-os",
            permission: [],
            root: modelId,
            parent: null,
            mapping: info.mapping,
            provider: info.provider
        }))
    })
);

// chat 路由
router.post(config.API_PREFIX + '/v1/chat/completions', withAuth, (req) => handleCompletion(req));

async function GrpcToPieces(models, message, rules, stream, temperature, top_p) {
        // 在非GPT类型的模型中,temperature和top_p是无效的
        // 使用系统的根证书
        const credentials = grpc.credentials.createSsl();
        let client,request;
        if (models.includes('gpt')){
                // 加载proto文件
                const packageDefinition = new GRPCHandler(config.GPT_PROTO).packageDefinition;
                // 构建请求消息
                request = {
                        models: models,
                        messages: [
                                {role: 0, message: rules}, // system
                                {role: 1, message: message} // user
                        ],
                        temperature:temperature || 0.1,
                        top_p:top_p ?? 1,
                }
                // 获取gRPC对象
                const GRPCobjects = grpc.loadPackageDefinition(packageDefinition).runtime.aot.machine_learning.parents.gpt;
                client = new GRPCobjects.GPTInferenceService(config.GPT_GRPC, credentials);
        } else {
                // 加载proto文件
                const packageDefinition = new GRPCHandler(config.COMMON_PROTO).packageDefinition;
                // 构建请求消息
                request = {
                        models: models,
                        args: {
                                messages: {
                                        unknown: 1,
                                        message: message
                                },
                                rules: rules
                        }
                };
                // 获取gRPC对象
                const GRPCobjects = grpc.loadPackageDefinition(packageDefinition).runtime.aot.machine_learning.parents.vertex;
                client = new GRPCobjects.VertexInferenceService(config.COMMON_GRPC, credentials);
        }
        return await ConvertOpenai(client,request,models,stream);
}

async function messagesProcess(messages) {
        let rules = '';
        let message = '';

        for (const msg of messages) {
                let role = msg.role;
                // 格式化为字符串
                const contentStr = Array.isArray(msg.content)
                    ? msg.content
                    .filter((item) => item.text)
                    .map((item) => item.text)
                    .join('') || ''
                    : msg.content;
                // 判断身份
                if (role === 'system') {
                        rules += `system:${contentStr};\r\n`;
                } else if (['user', 'assistant'].includes(role)) {
                        message += `${role}:${contentStr};\r\n`;
                }
        }

        return { rules, message };
}

async function ConvertOpenai(client,request,model,stream) {
        for (let i = 0; i < config.MAX_RETRY_COUNT; i++) {
                try {
                        if (stream) {
                                const call = client.PredictWithStream(request);
                                const encoder = new TextEncoder();
                                const ReturnStream = new ReadableStream({
                                    start(controller) {
                                            call.on('data', (response) => {
                                                    let response_code = Number(response.response_code);
                                                    if (response_code === 204) {
                                                            // 如果 response_code 是 204,关闭流
                                                            controller.close()
                                                            call.destroy()
                                                    } else if (response_code === 200) {
                                                            let response_message
                                                            if (model.includes('gpt')) {
                                                                    response_message = response.body.message_warpper.message.message;
                                                            } else {
                                                                    response_message = response.args.args.args.message;
                                                            }
                                                            // 否则,将数据块加入流中
                                                            controller.enqueue(encoder.encode(`data: ${JSON.stringify(ChatCompletionStreamWithModel(response_message, model))}\n\n`));
                                                    } else {
                                                            controller.error(new Error(`Error: stream chunk is not success`));
                                                            controller.close()
                                                    }
                                            })
                                    }
                                    });
                                return new Response(ReturnStream, {
                                        headers: {
                                                'Content-Type': 'text/event-stream',
                                        },
                                })
                } else {
                        const call = await new Promise((resolve, reject) => {
                                client.Predict(request, (err, response) => {
                                        if (err) reject(err);
                                        else resolve(response);
                                });
                        });
                        let response_code = Number(call.response_code);
                        if (response_code === 200) {
                                let response_message
                                if (model.includes('gpt')) {
                                        response_message = call.body.message_warpper.message.message;
                                } else {
                                        response_message = call.args.args.args.message;
                                }
                                return new Response(JSON.stringify(ChatCompletionWithModel(response_message, model)), {
                                                headers: {
                                                        'Content-Type': 'application/json',
                                                },
                                        });
                                }
                        }
                } catch (err) {
                        console.error(err);
                        await new Promise((resolve) => setTimeout(resolve, config.RETRY_DELAY));
                }
        }
        return error(500, err.message);
}

function ChatCompletionWithModel(message, model) {
        return {
                id: 'Chat-Nekohy',
                object: 'chat.completion',
                created: Date.now(),
                model,
                usage: {
                        prompt_tokens: 0,
                        completion_tokens: 0,
                        total_tokens: 0,
                },
                choices: [
                        {
                                message: {
                                        content: message,
                                        role: 'assistant',
                                },
                                index: 0,
                        },
                ],
        };
}

function ChatCompletionStreamWithModel(text, model) {
        return {
                id: 'chatcmpl-Nekohy',
                object: 'chat.completion.chunk',
                created: 0,
                model,
                choices: [
                        {
                                index: 0,
                                delta: {
                                        content: text,
                                },
                                finish_reason: null,
                        },
                ],
        };
}

async function handleCompletion(request) {
    try {
        const { model: inputModel, messages, stream, temperature, top_p } = await request.json();
        
        // 获取模型映射
        const modelInfo = MODEL_INFO[inputModel];
        if (!modelInfo) {
            return error(400, `Unsupported model: ${inputModel}`);
        }
        
        const mappedModel = modelInfo.mapping;
        
        // 解析 system 和 user/assistant 消息
        const { rules, message: content } = await messagesProcess(messages);
        
        // 使用映射后的模型名称
        return await GrpcToPieces(mappedModel, content, rules, stream, temperature, top_p);
    } catch (err) {
        return error(500, err.message);
    }
}

(async () => {
	//For Cloudflare Workers
	if (typeof addEventListener === 'function') return;
	// For Nodejs
	const ittyServer = createServerAdapter(router.fetch);
	console.log(`Listening on http://localhost:${config.PORT}`);
	const httpServer = createServer(ittyServer);
	httpServer.listen(config.PORT);
})();