File size: 8,969 Bytes
8391cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import time
import json
import grpc
import asyncio
from typing import List, Optional
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
from grpc_tools import protoc
import re

# 加载环境变量
load_dotenv()

# 配置类
class Config:
    def __init__(self):
        self.API_PREFIX = os.getenv('API_PREFIX', '/')
        self.API_KEY = os.getenv('API_KEY', '')
        self.MAX_RETRY_COUNT = int(os.getenv('MAX_RETRY_COUNT', 3))
        self.RETRY_DELAY = int(os.getenv('RETRY_DELAY', 5000))
        self.COMMON_GRPC = 'runtime-native-io-vertex-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
        self.COMMON_PROTO = 'protos/VertexInferenceService.proto'
        self.GPT_GRPC = 'runtime-native-io-gpt-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
        self.GPT_PROTO = 'protos/GPTInferenceService.proto'
        self.PORT = int(os.getenv('PORT', 8787))
        self.SUPPORTED_MODELS = [
            "gpt-4o-mini", "gpt-4o", "gpt-4-turbo", "gpt-4", "gpt-3.5-turbo",
            "claude-3-sonnet@20240229", "claude-3-opus@20240229", "claude-3-haiku@20240307",
            "claude-3-5-sonnet@20240620", "gemini-1.5-flash", "gemini-1.5-pro",
            "chat-bison", "codechat-bison"
        ]

    def is_valid_model(self, model):
        regex_input = r'^(claude-3-(5-sonnet|haiku|sonnet|opus))-(\d{8})$'
        match_input = re.match(regex_input, model)
        normalized_model = f"{match_input.group(1)}@{match_input.group(3)}" if match_input else model
        return normalized_model in self.SUPPORTED_MODELS

# gRPC处理类
class GRPCHandler:
    def __init__(self, proto_file):
        self.proto_file = proto_file
        self._compile_proto()
        self._load_proto()

    def _compile_proto(self):
        proto_dir = os.path.dirname(self.proto_file)
        proto_file = os.path.basename(self.proto_file)
        protoc.main((
            '',
            f'-I{proto_dir}',
            f'--python_out=.',
            f'--grpc_python_out=.',
            os.path.join(proto_dir, proto_file)
        ))

    def _load_proto(self):
        module_name = os.path.splitext(os.path.basename(self.proto_file))[0] + '_pb2_grpc'
        proto_module = __import__(module_name)
        self.stub_class = getattr(proto_module, f"{module_name.split('_')[0]}Stub")

    async def grpc_to_pieces(self, model, content, rules, temperature, top_p):
        channel = grpc.aio.secure_channel(
            config.COMMON_GRPC if not model.startswith('gpt') else config.GPT_GRPC,
            grpc.ssl_channel_credentials()
        )
        stub = self.stub_class(channel)

        try:
            request = self._build_request(model, content, rules, temperature, top_p)
            response = await stub.Predict(request)
            return self._process_response(response, model)
        except grpc.RpcError as e:
            print(f"RPC failed: {e}")
            return {"error": str(e)}
        finally:
            await channel.close()

    async def grpc_to_pieces_stream(self, model, content, rules, temperature, top_p):
        channel = grpc.aio.secure_channel(
            config.COMMON_GRPC if not model.startswith('gpt') else config.GPT_GRPC,
            grpc.ssl_channel_credentials()
        )
        stub = self.stub_class(channel)

        try:
            request = self._build_request(model, content, rules, temperature, top_p)
            async for response in stub.PredictWithStream(request):
                result = self._process_stream_response(response, model)
                if result:
                    yield f"data: {json.dumps(result)}\n\n"
        except grpc.RpcError as e:
            print(f"Stream RPC failed: {e}")
            yield f"data: {json.dumps({'error': str(e)})}\n\n"
        finally:
            await channel.close()

    def _build_request(self, model, content, rules, temperature, top_p):
        if model.startswith('gpt'):
            return self.stub_class.Request(
                models=model,
                messages=[
                    {"role": 0, "message": rules},
                    {"role": 1, "message": content}
                ],
                temperature=temperature or 0.1,
                top_p=top_p or 1.0
            )
        else:
            return self.stub_class.Request(
                models=model,
                args={
                    "messages": {
                        "unknown": 1,
                        "message": content
                    },
                    "rules": rules
                }
            )

    def _process_response(self, response, model):
        if response.response_code == 200:
            if model.startswith('gpt'):
                message = response.body.message_warpper.message.message
            else:
                message = response.args.args.args.message
            return chat_completion_with_model(message, model)
        return {"error": f"Invalid response code: {response.response_code}"}

    def _process_stream_response(self, response, model):
        if response.response_code == 204:
            return None
        elif response.response_code == 200:
            if model.startswith('gpt'):
                message = response.body.message_warpper.message.message
            else:
                message = response.args.args.args.message
            return chat_completion_stream_with_model(message, model)
        else:
            return {"error": f"Invalid response code: {response.response_code}"}

# 工具函数
def messages_process(messages):
    rules = ''
    message = ''

    for msg in messages:
        role = msg.role
        content = msg.content
        
        if isinstance(content, list):
            content = ''.join([item.get('text', '') for item in content if item.get('text')])
        
        if role == 'system':
            rules += f"system:{content};\r\n"
        elif role in ['user', 'assistant']:
            message += f"{role}:{content};\r\n"

    return rules, message

def chat_completion_with_model(message: str, model: str):
    return {
        "id": "Chat-Nekohy",
        "object": "chat.completion",
        "created": int(time.time()),
        "model": model,
        "usage": {
            "prompt_tokens": 0,
            "completion_tokens": 0,
            "total_tokens": 0,
        },
        "choices": [
            {
                "message": {
                    "content": message,
                    "role": "assistant",
                },
                "index": 0,
            },
        ],
    }

def chat_completion_stream_with_model(text: str, model: str):
    return {
        "id": "chatcmpl-Nekohy",
        "object": "chat.completion.chunk",
        "created": 0,
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {
                    "content": text,
                },
                "finish_reason": None,
            },
        ],
    }

# 初始化配置
config = Config()

# 初始化 FastAPI 应用
app = FastAPI()

# 定义请求模型
class ChatMessage(BaseModel):
    role: str
    content: str

class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    stream: Optional[bool] = False
    temperature: Optional[float] = None
    top_p: Optional[float] = None

# 路由定义
@app.get("/")
async def root():
    return {"message": "API 服务运行中~"}

@app.get("/ping")
async def ping():
    return {"message": "pong"}

@app.get(config.API_PREFIX + "/v1/models")
async def list_models():
    with open('cloud_model.json', 'r') as f:
        cloud_models = json.load(f)
    
    models = [
        {"id": model["unique"], "object": "model", "owned_by": "pieces-os"}
        for model in cloud_models["iterable"]
    ]
    
    return JSONResponse({
        "object": "list",
        "data": models
    })

@app.post(config.API_PREFIX + "/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
    if not config.is_valid_model(request.model):
        raise HTTPException(status_code=404, detail=f"Model '{request.model}' does not exist")

    rules, content = messages_process(request.messages)
    
    grpc_handler = GRPCHandler(config.COMMON_PROTO if not request.model.startswith('gpt') else config.GPT_PROTO)
    
    if request.stream:
        return StreamingResponse(
            grpc_handler.grpc_to_pieces_stream(
                request.model, content, rules, request.temperature, request.top_p
            ),
            media_type="text/event-stream"
        )
    else:
        response = await grpc_handler.grpc_to_pieces(
            request.model, content, rules, request.temperature, request.top_p
        )
        return JSONResponse(content=response)

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=config.PORT)