File size: 8,969 Bytes
8391cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import time
import json
import grpc
import asyncio
from typing import List, Optional
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
from grpc_tools import protoc
import re
# 加载环境变量
load_dotenv()
# 配置类
class Config:
def __init__(self):
self.API_PREFIX = os.getenv('API_PREFIX', '/')
self.API_KEY = os.getenv('API_KEY', '')
self.MAX_RETRY_COUNT = int(os.getenv('MAX_RETRY_COUNT', 3))
self.RETRY_DELAY = int(os.getenv('RETRY_DELAY', 5000))
self.COMMON_GRPC = 'runtime-native-io-vertex-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
self.COMMON_PROTO = 'protos/VertexInferenceService.proto'
self.GPT_GRPC = 'runtime-native-io-gpt-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
self.GPT_PROTO = 'protos/GPTInferenceService.proto'
self.PORT = int(os.getenv('PORT', 8787))
self.SUPPORTED_MODELS = [
"gpt-4o-mini", "gpt-4o", "gpt-4-turbo", "gpt-4", "gpt-3.5-turbo",
"claude-3-sonnet@20240229", "claude-3-opus@20240229", "claude-3-haiku@20240307",
"claude-3-5-sonnet@20240620", "gemini-1.5-flash", "gemini-1.5-pro",
"chat-bison", "codechat-bison"
]
def is_valid_model(self, model):
regex_input = r'^(claude-3-(5-sonnet|haiku|sonnet|opus))-(\d{8})$'
match_input = re.match(regex_input, model)
normalized_model = f"{match_input.group(1)}@{match_input.group(3)}" if match_input else model
return normalized_model in self.SUPPORTED_MODELS
# gRPC处理类
class GRPCHandler:
def __init__(self, proto_file):
self.proto_file = proto_file
self._compile_proto()
self._load_proto()
def _compile_proto(self):
proto_dir = os.path.dirname(self.proto_file)
proto_file = os.path.basename(self.proto_file)
protoc.main((
'',
f'-I{proto_dir}',
f'--python_out=.',
f'--grpc_python_out=.',
os.path.join(proto_dir, proto_file)
))
def _load_proto(self):
module_name = os.path.splitext(os.path.basename(self.proto_file))[0] + '_pb2_grpc'
proto_module = __import__(module_name)
self.stub_class = getattr(proto_module, f"{module_name.split('_')[0]}Stub")
async def grpc_to_pieces(self, model, content, rules, temperature, top_p):
channel = grpc.aio.secure_channel(
config.COMMON_GRPC if not model.startswith('gpt') else config.GPT_GRPC,
grpc.ssl_channel_credentials()
)
stub = self.stub_class(channel)
try:
request = self._build_request(model, content, rules, temperature, top_p)
response = await stub.Predict(request)
return self._process_response(response, model)
except grpc.RpcError as e:
print(f"RPC failed: {e}")
return {"error": str(e)}
finally:
await channel.close()
async def grpc_to_pieces_stream(self, model, content, rules, temperature, top_p):
channel = grpc.aio.secure_channel(
config.COMMON_GRPC if not model.startswith('gpt') else config.GPT_GRPC,
grpc.ssl_channel_credentials()
)
stub = self.stub_class(channel)
try:
request = self._build_request(model, content, rules, temperature, top_p)
async for response in stub.PredictWithStream(request):
result = self._process_stream_response(response, model)
if result:
yield f"data: {json.dumps(result)}\n\n"
except grpc.RpcError as e:
print(f"Stream RPC failed: {e}")
yield f"data: {json.dumps({'error': str(e)})}\n\n"
finally:
await channel.close()
def _build_request(self, model, content, rules, temperature, top_p):
if model.startswith('gpt'):
return self.stub_class.Request(
models=model,
messages=[
{"role": 0, "message": rules},
{"role": 1, "message": content}
],
temperature=temperature or 0.1,
top_p=top_p or 1.0
)
else:
return self.stub_class.Request(
models=model,
args={
"messages": {
"unknown": 1,
"message": content
},
"rules": rules
}
)
def _process_response(self, response, model):
if response.response_code == 200:
if model.startswith('gpt'):
message = response.body.message_warpper.message.message
else:
message = response.args.args.args.message
return chat_completion_with_model(message, model)
return {"error": f"Invalid response code: {response.response_code}"}
def _process_stream_response(self, response, model):
if response.response_code == 204:
return None
elif response.response_code == 200:
if model.startswith('gpt'):
message = response.body.message_warpper.message.message
else:
message = response.args.args.args.message
return chat_completion_stream_with_model(message, model)
else:
return {"error": f"Invalid response code: {response.response_code}"}
# 工具函数
def messages_process(messages):
rules = ''
message = ''
for msg in messages:
role = msg.role
content = msg.content
if isinstance(content, list):
content = ''.join([item.get('text', '') for item in content if item.get('text')])
if role == 'system':
rules += f"system:{content};\r\n"
elif role in ['user', 'assistant']:
message += f"{role}:{content};\r\n"
return rules, message
def chat_completion_with_model(message: str, model: str):
return {
"id": "Chat-Nekohy",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0,
},
"choices": [
{
"message": {
"content": message,
"role": "assistant",
},
"index": 0,
},
],
}
def chat_completion_stream_with_model(text: str, model: str):
return {
"id": "chatcmpl-Nekohy",
"object": "chat.completion.chunk",
"created": 0,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": text,
},
"finish_reason": None,
},
],
}
# 初始化配置
config = Config()
# 初始化 FastAPI 应用
app = FastAPI()
# 定义请求模型
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
stream: Optional[bool] = False
temperature: Optional[float] = None
top_p: Optional[float] = None
# 路由定义
@app.get("/")
async def root():
return {"message": "API 服务运行中~"}
@app.get("/ping")
async def ping():
return {"message": "pong"}
@app.get(config.API_PREFIX + "/v1/models")
async def list_models():
with open('cloud_model.json', 'r') as f:
cloud_models = json.load(f)
models = [
{"id": model["unique"], "object": "model", "owned_by": "pieces-os"}
for model in cloud_models["iterable"]
]
return JSONResponse({
"object": "list",
"data": models
})
@app.post(config.API_PREFIX + "/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
if not config.is_valid_model(request.model):
raise HTTPException(status_code=404, detail=f"Model '{request.model}' does not exist")
rules, content = messages_process(request.messages)
grpc_handler = GRPCHandler(config.COMMON_PROTO if not request.model.startswith('gpt') else config.GPT_PROTO)
if request.stream:
return StreamingResponse(
grpc_handler.grpc_to_pieces_stream(
request.model, content, rules, request.temperature, request.top_p
),
media_type="text/event-stream"
)
else:
response = await grpc_handler.grpc_to_pieces(
request.model, content, rules, request.temperature, request.top_p
)
return JSONResponse(content=response)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=config.PORT)
|