File size: 13,864 Bytes
e09949e
 
 
 
 
 
 
 
408b814
 
 
e09949e
408b814
 
e09949e
06c2475
408b814
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c2475
e09949e
 
 
 
 
 
06c2475
e09949e
 
408b814
e09949e
408b814
e09949e
 
 
 
 
 
 
 
 
 
408b814
e09949e
 
408b814
 
 
e09949e
 
 
 
408b814
 
 
e09949e
 
 
 
 
 
 
 
 
 
 
 
408b814
 
e09949e
 
 
408b814
e09949e
f7e6819
 
e09949e
 
06c2475
f7e6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09949e
f7e6819
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e6819
9104f63
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
 
 
e09949e
 
408b814
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
e09949e
408b814
 
06c2475
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c2475
e09949e
 
 
 
 
 
 
 
 
 
 
06c2475
e09949e
 
 
 
06c2475
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
 
 
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
 
 
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
 
 
e09949e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b814
 
e09949e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import grpc from '@huayue/grpc-js'
import protoLoader from '@grpc/proto-loader'
import { AutoRouter, cors, error, json } from 'itty-router'
import dotenv from 'dotenv'
import path, { dirname } from 'path'
import { fileURLToPath } from 'url'
import { createServerAdapter } from '@whatwg-node/server'
import { createServer } from 'http'

// 加载环境变量
dotenv.config();

// 获取当前文件的目录路径(ESM 方式)
const __dirname = dirname(fileURLToPath(import.meta.url));

// 初始化配置
class Config {
  constructor() {
    this.API_PREFIX = process.env.API_PREFIX || '/'
    this.API_KEY = process.env.API_KEY || ''
    this.MAX_RETRY_COUNT = process.env.MAX_RETRY_COUNT || 3
    this.RETRY_DELAY = process.env.RETRY_DELAY || 5000
    this.COMMON_GRPC = 'runtime-native-io-vertex-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
    this.COMMON_PROTO = path.join(__dirname, '..', 'protos', 'VertexInferenceService.proto')
    this.GPT_GRPC = 'runtime-native-io-gpt-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
    this.GPT_PROTO = path.join(__dirname, '..', 'protos', 'GPTInferenceService.proto')
    this.PORT = process.env.PORT || 8787
    // 添加支持的模型列表
    this.SUPPORTED_MODELS = process.env.SUPPORTED_MODELS || [
      'gpt-4o-mini',
      'gpt-4o',
      'gpt-4-turbo',
      'gpt-4',
      'gpt-3.5-turbo',
      'claude-3-sonnet@20240229',
      'claude-3-opus@20240229',
      'claude-3-haiku@20240307',
      'claude-3-5-sonnet@20240620',
      'gemini-1.5-flash',
      'gemini-1.5-pro',
      'chat-bison',
      'codechat-bison',
    ]
  }

  // 添加模型验证方法
  isValidModel(model) {
    // 处理 Claude 模型的特殊格式
    const RegexInput = /^(claude-3-(5-sonnet|haiku|sonnet|opus))-(\d{8})$/
    const matchInput = model.match(RegexInput)
    const normalizedModel = matchInput ? `${matchInput[1]}@${matchInput[3]}` : model

    return this.SUPPORTED_MODELS.includes(normalizedModel)
  }
}

class GRPCHandler {
  constructor(protoFilePath) {
    // 动态加载传入的 .proto 文件路径
    this.packageDefinition = protoLoader.loadSync(protoFilePath, {
      keepCase: true,
      longs: String,
      enums: String,
      defaults: true,
      oneofs: true,
    })
  }
}
const config = new Config()

// 中间件
// 添加运行回源
const { preflight, corsify } = cors({
  origin: '*',
  allowMethods: '*',
  exposeHeaders: '*',
})

// 添加认证
const withAuth = (request) => {
  if (config.API_KEY) {
    const authHeader = request.headers.get('Authorization')
    if (!authHeader || !authHeader.startsWith('Bearer ')) {
      return error(401, 'Unauthorized: Missing or invalid Authorization header')
    }
    const token = authHeader.substring(7)
    if (token !== config.API_KEY) {
      return error(403, 'Forbidden: Invalid API key')
    }
  }
}

// 返回运行信息
const logger = (res, req) => {
  console.log(req.method, res.status, req.url, Date.now() - req.start, 'ms')
}

const router = AutoRouter({
  before: [preflight],
  missing: () => error(404, '404 not found.'),
  finally: [corsify, logger],
})

// Router路径
router.get('/', () => json({
    service: "AI Chat Completion Proxy",
    usage: {
        endpoint: "/v1/chat/completions",
        method: "POST",
        headers: {
            "Content-Type": "application/json",
            "Authorization": "Bearer YOUR_API_KEY"
        },
        body: {
            model: "One of: gpt-4o-mini, gpt-4o, gpt-4-turbo, gpt-4, gpt-3.5-turbo, claude-3-sonnet-20240229, claude-3-opus-20240229, claude-3-haiku-20240307, claude-3-5-sonnet-20240620, gemini-1.5-flash, gemini-1.5-pro, chat-bison, codechat-bison",
            messages: [
                { role: "system", content: "You are a helpful assistant." },
                { role: "user", content: "Hello, who are you?" }
            ],
            stream: false,
            temperature: 0.7,
            top_p: 1
        }
    },
    availableModels: [
        "gpt-4o-mini",
        "gpt-4o",
        "gpt-4-turbo",
        "gpt-4",
        "gpt-3.5-turbo",
        "claude-3-sonnet-20240229",
        "claude-3-opus-20240229",
        "claude-3-haiku-20240307",
        "claude-3-5-sonnet-20240620",
        "gemini-1.5-flash",
        "gemini-1.5-pro",
        "chat-bison",
        "codechat-bison"
    ],
    note: "Replace YOUR_API_KEY with your actual API key."
}));

router.get(config.API_PREFIX + '/v1/models', withAuth, () =>
  json({
    object: 'list',
    data: [
      { id: 'gpt-4o-mini', object: 'model', owned_by: 'pieces-os' },
      { id: 'gpt-4o', object: 'model', owned_by: 'pieces-os' },
      { id: 'gpt-4-turbo', object: 'model', owned_by: 'pieces-os' },
      { id: 'gpt-4', object: 'model', owned_by: 'pieces-os' },
      { id: 'gpt-3.5-turbo', object: 'model', owned_by: 'pieces-os' },
      { id: 'claude-3-sonnet-20240229', object: 'model', owned_by: 'pieces-os' },
      { id: 'claude-3-opus-20240229', object: 'model', owned_by: 'pieces-os' },
      { id: 'claude-3-haiku-20240307', object: 'model', owned_by: 'pieces-os' },
      { id: 'claude-3-5-sonnet-20240620', object: 'model', owned_by: 'pieces-os' },
      { id: 'gemini-1.5-flash', object: 'model', owned_by: 'pieces-os' },
      { id: 'gemini-1.5-pro', object: 'model', owned_by: 'pieces-os' },
      { id: 'chat-bison', object: 'model', owned_by: 'pieces-os' },
      { id: 'codechat-bison', object: 'model', owned_by: 'pieces-os' },
    ],
  }),
)

router.post(config.API_PREFIX + '/v1/chat/completions', withAuth, (req) => handleCompletion(req));

async function GrpcToPieces(inputModel, OriginModel, message, rules, stream, temperature, top_p) {
  // 在非GPT类型的模型中,temperature和top_p是无效的
  // 使用系统的根证书
  const credentials = grpc.credentials.createSsl()
  let client, request
  if (inputModel.includes('gpt')) {
    // 加载proto文件
    const packageDefinition = new GRPCHandler(config.GPT_PROTO).packageDefinition
    // 构建请求消息
    request = {
      models: inputModel,
      messages: [
        { role: 0, message: rules }, // system
        { role: 1, message: message }, // user
      ],
      temperature: temperature || 0.1,
      top_p: top_p ?? 1,
    }
    // 获取gRPC对象
    const GRPCobjects = grpc.loadPackageDefinition(packageDefinition).runtime.aot.machine_learning.parents.gpt
    client = new GRPCobjects.GPTInferenceService(config.GPT_GRPC, credentials)
  } else {
    // 加载proto文件
    const packageDefinition = new GRPCHandler(config.COMMON_PROTO).packageDefinition
    // 构建请求消息
    request = {
      models: inputModel,
      args: {
        messages: {
          unknown: 1,
          message: message,
        },
        rules: rules,
      },
    }
    // 获取gRPC对象
    const GRPCobjects = grpc.loadPackageDefinition(packageDefinition).runtime.aot.machine_learning.parents.vertex
    client = new GRPCobjects.VertexInferenceService(config.COMMON_GRPC, credentials)
  }
  return await ConvertOpenai(client, request, inputModel, OriginModel, stream)
}

async function messagesProcess(messages) {
  let rules = ''
  let message = ''

  for (const msg of messages) {
    let role = msg.role
    // 格式化为字符串
    const contentStr = Array.isArray(msg.content)
      ? msg.content
          .filter((item) => item.text)
          .map((item) => item.text)
          .join('') || ''
      : msg.content
    // 判断身份
    if (role === 'system') {
      rules += `system:${contentStr};\r\n`
    } else if (['user', 'assistant'].includes(role)) {
      message += `${role}:${contentStr};\r\n`
    }
  }

  return { rules, message }
}

async function ConvertOpenai(client, request, inputModel, OriginModel, stream) {
  const metadata = new grpc.Metadata()
  metadata.set('User-Agent', 'dart-grpc/2.0.0')
  for (let i = 0; i < config.MAX_RETRY_COUNT; i++) {
    try {
      if (stream) {
        const call = client.PredictWithStream(request, metadata)
        const encoder = new TextEncoder()
        const ReturnStream = new ReadableStream({
          start(controller) {
            // 处理数据
            call.on('data', (response) => {
              try {
                let response_code = Number(response.response_code)
                if (response_code === 204) {
                  controller.close()
                  call.destroy()
                } else if (response_code === 200) {
                  let response_message
                  if (inputModel.includes('gpt')) {
                    response_message = response.body.message_warpper.message.message
                  } else {
                    response_message = response.args.args.args.message
                  }
                  controller.enqueue(
                    encoder.encode(`data: ${JSON.stringify(ChatCompletionStreamWithModel(response_message, OriginModel))}\n\n`),
                  )
                } else {
                  console.error(`Invalid response code: ${response_code}`)
                  controller.error(error)
                }
              } catch (error) {
                console.error('Error processing stream data:', error)
                controller.error(error)
              }
            })

            // 处理错误
            call.on('error', (error) => {
              console.error('Stream error:', error)
              // 如果是 INTERNAL 错误且包含 RST_STREAM,可能是正常的流结束
              if (error.code === 13 && error.details.includes('RST_STREAM')) {
                controller.close()
              } else {
                controller.error(error)
              }
              call.destroy()
            })

            // 处理结束
            call.on('end', () => {
              controller.close()
            })

            // 处理取消
            return () => {
              call.destroy()
            }
          },
        })
        return new Response(ReturnStream, {
          headers: {
            'Content-Type': 'text/event-stream',
            Connection: 'keep-alive',
            'Cache-Control': 'no-cache',
            'Transfer-Encoding': 'chunked',
          },
        })
      } else {
        // 非流式调用保持不变
        const call = await new Promise((resolve, reject) => {
          client.Predict(request, metadata, (err, response) => {
            if (err) reject(err)
            else resolve(response)
          })
        })
        let response_code = Number(call.response_code)
        if (response_code === 200) {
          let response_message
          if (inputModel.includes('gpt')) {
            response_message = call.body.message_warpper.message.message
          } else {
            response_message = call.args.args.args.message
          }
          return new Response(JSON.stringify(ChatCompletionWithModel(response_message, OriginModel)), {
            headers: {
              'Content-Type': 'application/json',
            },
          })
        } else {
          throw new Error(`Invalid response code: ${response_code}`)
        }
      }
    } catch (err) {
      console.error(`Attempt ${i + 1} failed:`, err)
      await new Promise((resolve) => setTimeout(resolve, config.RETRY_DELAY))
    }
  }
  return new Response(
    JSON.stringify({
      error: {
        message: 'An error occurred while processing your request',
        type: 'server_error',
        code: 'internal_error',
        param: null,
      },
    }),
    {
      status: 500,
      headers: {
        'Content-Type': 'application/json',
      },
    },
  )
}

function ChatCompletionWithModel(message, model) {
  return {
    id: 'Chat-Nekohy',
    object: 'chat.completion',
    created: Date.now(),
    model,
    usage: {
      prompt_tokens: 0,
      completion_tokens: 0,
      total_tokens: 0,
    },
    choices: [
      {
        message: {
          content: message,
          role: 'assistant',
        },
        index: 0,
      },
    ],
  }
}

function ChatCompletionStreamWithModel(text, model) {
  return {
    id: 'chatcmpl-Nekohy',
    object: 'chat.completion.chunk',
    created: 0,
    model,
    choices: [
      {
        index: 0,
        delta: {
          content: text,
        },
        finish_reason: null,
      },
    ],
  }
}

async function handleCompletion(request) {
  try {
    // 解析openai格式API请求
    const { model: OriginModel, messages, stream, temperature, top_p } = await request.json()
    const RegexInput = /^(claude-3-(5-sonnet|haiku|sonnet|opus))-(\d{8})$/
    const matchInput = OriginModel.match(RegexInput)
    const inputModel = matchInput ? `${matchInput[1]}@${matchInput[3]}` : OriginModel
    // 添加模型验证
    if (!config.isValidModel(inputModel)) {
      return new Response(
        JSON.stringify({
          error: {
            message: `Model '${OriginModel}' does not exist`,
            type: 'invalid_request_error',
            param: 'model',
            code: 'model_not_found',
          },
        }),
        {
          status: 404,
          headers: {
            'Content-Type': 'application/json',
          },
        },
      )
    }
    console.log(inputModel, messages, stream)
    // 解析system和user/assistant消息
    const { rules, message: content } = await messagesProcess(messages)
    console.log(rules, content)
    // 响应码,回复的消息
    return await GrpcToPieces(inputModel, OriginModel, content, rules, stream, temperature, top_p)
  } catch (err) {
    return error(500, err.message)
  }
}

;(async () => {
  //For Cloudflare Workers
  if (typeof addEventListener === 'function') return
  // For Nodejs
  const ittyServer = createServerAdapter(router.fetch)
  console.log(`Listening on http://localhost:${config.PORT}`)
  const httpServer = createServer(ittyServer)
  httpServer.listen(config.PORT)
})()