Spaces:
mxrkai
/
Runtime error

File size: 4,713 Bytes
bd06cc8
 
e100b79
bd06cc8
 
e100b79
bd06cc8
e100b79
 
 
 
bd06cc8
 
 
 
 
 
 
 
 
 
 
e100b79
bd06cc8
 
 
 
 
 
 
 
 
e100b79
bd06cc8
fed1648
364bda2
 
c2b4e5c
364bda2
 
c2b4e5c
364bda2
 
fed1648
bd06cc8
 
 
 
bf3f697
bd06cc8
fed1648
bd06cc8
fed1648
 
 
 
 
bd06cc8
fed1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e100b79
bd06cc8
 
e100b79
bd06cc8
fed1648
bd06cc8
 
 
 
 
 
 
fed1648
 
bd06cc8
 
 
 
 
 
 
 
 
 
 
 
fed1648
bd06cc8
 
 
 
 
e100b79
bd06cc8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import json
import sseclient
import requests
from flask import Flask, request, Response, stream_with_context
import random

app = Flask(__name__)

def generate_random_ip():
    return f"{random.randint(1,255)}.{random.randint(0,255)}.{random.randint(0,255)}.{random.randint(0,255)}"

def format_openai_response(content, finish_reason=None):
    return {
        "id": "chatcmpl-123",
        "object": "chat.completion.chunk",
        "created": 1677652288,
        "model": "gpt-4o",
        "choices": [{
            "delta": {"content": content} if content else {"finish_reason": finish_reason},
            "index": 0,
            "finish_reason": finish_reason
        }]
    }

@app.route('/hf/v1/chat/completions', methods=['POST'])
def chat_completions():
    data = request.json
    messages = data.get('messages', [])
    stream = data.get('stream', False)
    
    if not messages:
        return {"error": "No messages provided"}, 400
    
    model = data.get('model', 'gpt-4o')

    if model.startswith('gpt'):
        endpoint = "openAI"
        original_api_url = 'https://chatpro.ai-pro.org/api/ask/openAI'
    elif model.startswith('claude'):
        endpoint = "claude"
        original_api_url = 'https://chatpro.ai-pro.org/api/ask/claude'
    else:
        return {"error": "Unsupported model"}, 400

    headers = {
        'content-type': 'application/json',
        'X-Forwarded-For': generate_random_ip(),
        'origin': 'https://chatpro.ai-pro.org',
        'user-agent': generate_user_agent()
    }

    def generate():
        nonlocal messages
        full_response = ""
        while True:
            conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
            conversation += "\n请关注并回复user最近的消息并避免总结对话历史的回答"
            
            payload = {
                "text": conversation,
                "endpoint": endpoint,
                "model": model
            }
            
            response = requests.post(original_api_url, headers=headers, json=payload, stream=True)
            client = sseclient.SSEClient(response)
            
            for event in client.events():
                if event.data.startswith('{"text":'):
                    data = json.loads(event.data)
                    new_content = data['text'][len(full_response):]
                    full_response = data['text']
                    
                    if new_content:
                        yield f"data: {json.dumps(format_openai_response(new_content))}\n\n"
                
                elif '"final":true' in event.data:
                    final_data = json.loads(event.data)
                    finish_reason = final_data.get('responseMessage', {}).get('finish_reason', 'stop')
                    if finish_reason == 'length':
                        # 如果因为长度被截断,添加已生成的回复到消息列表,并继续生成
                        messages.append({"role": "assistant", "content": full_response})
                        messages.append({"role": "user", "content": "请继续你的输出"})
                        break
                    else:
                        yield f"data: {json.dumps(format_openai_response('', finish_reason))}\n\n"
                        yield "data: [DONE]\n\n"
                        return

    if stream:
        return Response(stream_with_context(generate()), content_type='text/event-stream')
    else:
        full_response = ""
        finish_reason = "stop"
        for chunk in generate():
            if chunk.startswith("data: ") and not chunk.strip() == "data: [DONE]":
                response_data = json.loads(chunk[6:])
                if 'choices' in response_data and response_data['choices']:
                    delta = response_data['choices'][0].get('delta', {})
                    if 'content' in delta:
                        full_response += delta['content']
                    if 'finish_reason' in delta:
                        finish_reason = delta['finish_reason']

        return {
            "id": "chatcmpl-123",
            "object": "chat.completion",
            "created": 1677652288,
            "model": model,
            "choices": [{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": full_response
                },
                "finish_reason": finish_reason
            }],
            "usage": {
                "prompt_tokens": 0,
                "completion_tokens": 0,
                "total_tokens": 0
            }
        }

if __name__ == '__main__':
    app.run(debug=True, port=5000)