File size: 20,683 Bytes
9cf0d3b 34226fa b27d93f 1d3da36 18d089c 479563b 18d089c 479563b 042230d 2722c48 479563b 628f747 18d089c 1d3da36 34226fa 18d089c 34226fa 479563b 7937c8d 479563b a1ae61d 628f747 479563b 3908754 479563b 3908754 479563b 7937c8d 18d089c 521a764 a1ae61d 1571fac 521a764 1571fac 479563b 1571fac 18d089c 1571fac 18d089c 1571fac 18d089c bf65fef 1571fac 18d089c 1571fac 18d089c 1571fac 521a764 1571fac 80dc124 18d089c 479563b 1571fac 479563b 18d089c 521a764 6b5328d 479563b 521a764 479563b 521a764 479563b 521a764 479563b 521a764 18d089c 479563b 18d089c 80dc124 18d089c 400d142 18d089c 1d3da36 18d089c 479563b 18d089c 1d3da36 479563b 6b5328d 18d089c 479563b 18d089c 479563b 18d089c 628f747 479563b 6b5328d 7937c8d 479563b 7937c8d 479563b 2722c48 479563b 80a3863 479563b 521a764 34226fa 042230d 521a764 479563b b27d93f 479563b 18d089c 479563b 34226fa 45670a8 479563b 18d089c 521a764 479563b 18d089c 479563b 18d089c 2722c48 1cfe11e 479563b 1cfe11e 18d089c 2722c48 18d089c 479563b 18d089c 479563b 18d089c 34226fa 479563b 18d089c 479563b 18d089c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import re
import random
import string
import uuid
import json
import logging
import asyncio
import base64
from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from typing import List, Dict, Any, Optional, AsyncGenerator, Union
from datetime import datetime
from fastapi.responses import StreamingResponse
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Custom exception for model not working
class ModelNotWorkingException(Exception):
def __init__(self, model: str):
self.model = model
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
super().__init__(self.message)
# Proper implementation for ImageResponse and to_data_uri
class ImageResponse:
def __init__(self, data_uri: str, alt: str):
self.data_uri = data_uri
self.alt = alt
def to_data_uri(image: bytes, mime_type: str = "image/png") -> str:
encoded = base64.b64encode(image).decode('utf-8')
return f"data:{mime_type};base64,{encoded}"
def decode_base64_image(data_uri: str) -> bytes:
try:
header, encoded = data_uri.split(",", 1)
return base64.b64decode(encoded)
except Exception as e:
logger.error(f"Error decoding base64 image: {e}")
raise e
class Blackbox:
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
*image_models,
'Niansuh',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
'Niansuh': '@Niansuh',
}
model_referers = {
"blackboxai": f"{url}/?model=blackboxai",
"gpt-4o": f"{url}/?model=gpt-4o",
"gemini-pro": f"{url}/?model=gemini-pro",
"claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
"niansuh": "Niansuh",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.userSelectedModel:
return cls.userSelectedModel[model]
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, Any]],
proxy: Optional[str] = None,
image: Optional[str] = None, # Expecting a base64 string
image_name: Optional[str] = None,
webSearchMode: bool = False,
**kwargs
) -> AsyncGenerator[Any, None]:
model = cls.get_model(model)
logger.info(f"Selected model: {model}")
if not cls.working or model not in cls.models:
logger.error(f"Model {model} is not working or not supported.")
raise ModelNotWorkingException(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"priority": "u=1, i",
"referer": cls.model_referers.get(model, cls.url),
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
}
if model in cls.model_prefixes:
prefix = cls.model_prefixes[model]
if not messages[0]['content'].startswith(prefix):
logger.debug(f"Adding prefix '{prefix}' to the first message.")
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
user_message = {
"id": random_id,
"role": 'user',
"content": 'Hi' # This should be dynamically set based on input
}
if image is not None:
try:
image_bytes = decode_base64_image(image)
data_uri = to_data_uri(image_bytes)
user_message['data'] = {
'fileText': '',
'imageBase64': data_uri,
'title': image_name or "Uploaded Image"
}
user_message['content'] = 'FILE:BB\n$#$\n\n$#$\n' + user_message['content']
logger.debug("Image data added to the message.")
except Exception as e:
logger.error(f"Failed to decode base64 image: {e}")
raise HTTPException(status_code=400, detail="Invalid image data provided.")
# Update the last message with user_message
if messages:
messages[-1] = user_message
else:
messages.append(user_message)
data = {
"messages": messages,
"id": random_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": {},
"trendingAgentMode": {},
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 99999999,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"userSelectedModel": None,
"webSearchMode": webSearchMode,
}
if model in cls.agentMode:
data["agentMode"] = cls.agentMode[model]
elif model in cls.trendingAgentMode:
data["trendingAgentMode"] = cls.trendingAgentMode[model]
elif model in cls.userSelectedModel:
data["userSelectedModel"] = cls.userSelectedModel[model]
logger.info(f"Sending request to {cls.api_endpoint} with data: {data}")
timeout = ClientTimeout(total=60) # Set an appropriate timeout
retry_attempts = 10 # Set the number of retry attempts
for attempt in range(retry_attempts):
try:
async with ClientSession(headers=headers, timeout=timeout) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
logger.info(f"Received response with status {response.status}")
if model == 'ImageGeneration':
response_text = await response.text()
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
if url_match:
image_url = url_match.group(0)
logger.info(f"Image URL found: {image_url}")
# Fetch the image data
async with session.get(image_url) as img_response:
img_response.raise_for_status()
image_bytes = await img_response.read()
data_uri = to_data_uri(image_bytes)
logger.info("Image converted to base64 data URI.")
yield ImageResponse(data_uri, alt=messages[-1]['content'])
else:
logger.error("Image URL not found in the response.")
raise Exception("Image URL not found in the response")
else:
full_response = ""
search_results_json = ""
try:
async for chunk, _ in response.content.iter_chunks():
if chunk:
decoded_chunk = chunk.decode(errors='ignore')
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
if decoded_chunk.strip():
if '$~~~$' in decoded_chunk:
search_results_json += decoded_chunk
else:
full_response += decoded_chunk
yield decoded_chunk
logger.info("Finished streaming response chunks.")
except Exception as e:
logger.exception("Error while iterating over response chunks.")
raise e
if data["webSearchMode"] and search_results_json:
match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
if match:
try:
search_results = json.loads(match.group(1))
formatted_results = "\n\n**Sources:**\n"
for i, result in enumerate(search_results[:5], 1):
formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
logger.info("Formatted search results.")
yield formatted_results
except json.JSONDecodeError as je:
logger.error("Failed to parse search results JSON.")
raise je
break # Exit the retry loop if successful
except ClientError as ce:
logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=502, detail="Error communicating with the external API. | NiansuhAI")
except asyncio.TimeoutError:
logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=504, detail="External API request timed out. | NiansuhAI")
except Exception as e:
logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=500, detail=str(e))
# FastAPI app setup
app = FastAPI()
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
stream: Optional[bool] = False
webSearchMode: Optional[bool] = False
image: Optional[str] = None # Add image field for base64 data
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": None,
}
@app.post("/niansuhai/v1/chat/completions")
async def chat_completions(request: ChatRequest, req: Request):
logger.info(f"Received chat completions request: model='{request.model}' messages={request.messages} stream={request.stream} webSearchMode={request.webSearchMode} image={request.image}")
try:
# Validate that all messages have string content
for idx, msg in enumerate(request.messages):
if not isinstance(msg.content, str):
logger.error(f"Message at index {idx} has invalid content type: {type(msg.content)}")
raise HTTPException(
status_code=422,
detail=[{
"type": "string_type",
"loc": ["body", "messages", idx, "content"],
"msg": "Input should be a valid string",
"input": msg.content
}]
)
# Convert Pydantic messages to dicts
messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
async_generator = Blackbox.create_async_generator(
model=request.model,
messages=messages,
proxy=None, # Pass proxy if needed
image=request.image, # Pass the base64 image
image_name=None,
webSearchMode=request.webSearchMode
)
if request.stream:
async def generate():
try:
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
# Use the base64 data URI directly
image_markdown = f""
response_chunk = create_response(image_markdown, request.model)
else:
response_chunk = create_response(chunk, request.model)
# Yield each chunk in SSE format
yield f"data: {json.dumps(response_chunk)}\n\n"
# Signal the end of the stream
yield "data: [DONE]\n\n"
except HTTPException as he:
error_response = {"error": he.detail}
yield f"data: {json.dumps(error_response)}\n\n"
except Exception as e:
logger.exception("Error during streaming response generation.")
error_response = {"error": str(e)}
yield f"data: {json.dumps(error_response)}\n\n"
return StreamingResponse(generate(), media_type="text/event-stream")
else:
response_content = ""
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
response_content += f"\n"
else:
response_content += chunk
logger.info("Completed non-streaming response generation.")
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop",
"index": 0
}
],
"usage": {
"prompt_tokens": sum(len(msg['content'].split()) for msg in messages),
"completion_tokens": len(response_content.split()),
"total_tokens": sum(len(msg['content'].split()) for msg in messages) + len(response_content.split())
},
}
except ModelNotWorkingException as e:
logger.warning(f"Model not working: {e}")
raise HTTPException(status_code=503, detail=str(e))
except HTTPException as he:
logger.warning(f"HTTPException: {he.detail}")
raise he
except Exception as e:
logger.exception("An unexpected error occurred while processing the chat completions request.")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/niansuhai/v1/models")
async def get_models():
logger.info("Fetching available models.")
return {"data": [{"id": model} for model in Blackbox.models]}
# Additional endpoints for better functionality
@app.get("/niansuhai/v1/health")
async def health_check():
"""Health check endpoint to verify the service is running."""
return {"status": "ok"}
@app.get("/niansuhai/v1/models/{model}/status")
async def model_status(model: str):
"""Check if a specific model is available."""
if model in Blackbox.models:
return {"model": model, "status": "available"}
elif model in Blackbox.model_aliases:
actual_model = Blackbox.model_aliases[model]
return {"model": actual_model, "status": "available via alias"}
else:
raise HTTPException(status_code=404, detail="Model not found")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|