File size: 16,450 Bytes
284013e db33061 c815e1f 284013e e97905c 61526f3 284013e c30da33 521a764 c30da33 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 61526f3 3b1505d 61526f3 3b1505d 61526f3 44f4452 61526f3 521a764 3b1505d 521a764 c30da33 521a764 c30da33 521a764 c30da33 61526f3 c30da33 a1ae61d 979ad29 284013e 979ad29 284013e 979ad29 284013e 979ad29 284013e 979ad29 284013e 979ad29 284013e 979ad29 284013e 44f4452 284013e 979ad29 44f4452 284013e 979ad29 284013e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
from datetime import datetime
from aiohttp import ClientSession, ClientResponseError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import JSONResponse
from pydantic import BaseModel
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
if not API_KEYS or API_KEYS == ['']:
logger.error("No API keys found. Please set the API_KEYS environment variable.")
raise Exception("API_KEYS environment variable not set.")
# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
# Define cleanup interval and window
CLEANUP_INTERVAL = 60 # seconds
RATE_LIMIT_WINDOW = 60 # seconds
class Blackbox:
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_gpt_4 = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
*image_models,
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
}
model_referers = {
"blackboxai": "/?model=blackboxai",
"gpt-4o": "/?model=gpt-4o",
"gemini-pro": "/?model=gemini-pro",
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@staticmethod
def generate_random_string(length: int = 7) -> str:
characters = string.ascii_letters + string.digits
return ''.join(random.choices(characters, k=length))
@staticmethod
def generate_next_action() -> str:
return uuid.uuid4().hex
@staticmethod
def generate_next_router_state_tree() -> str:
router_state = [
"",
{
"children": [
"(chat)",
{
"children": [
"__PAGE__",
{}
]
}
]
},
None,
None,
True
]
return json.dumps(router_state)
@staticmethod
def clean_response(text: str) -> str:
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
cleaned_text = re.sub(pattern, '', text)
return cleaned_text
@classmethod
async def generate_response(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
websearch: bool = False,
**kwargs
) -> Dict[str, Any]:
"""
Generates a response from Blackbox AI for the /v1/chat/completions endpoint.
Parameters:
model (str): Model to use for generating responses.
messages (List[Dict[str, str]]): Message history.
proxy (Optional[str]): Proxy URL, if needed.
websearch (bool): Enables or disables web search mode.
**kwargs: Additional keyword arguments.
Returns:
Dict[str, Any]: The response dictionary in the format required by /v1/chat/completions.
"""
model = cls.get_model(model)
chat_id = cls.generate_random_string()
next_action = cls.generate_next_action()
next_router_state_tree = cls.generate_next_router_state_tree()
agent_mode = cls.agentMode.get(model, {})
trending_agent_mode = cls.trendingAgentMode.get(model, {})
prefix = cls.model_prefixes.get(model, "")
formatted_prompt = ""
for message in messages:
role = message.get('role', '').capitalize()
content = message.get('content', '')
if role and content:
formatted_prompt += f"{role}: {content}\n"
if prefix:
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
referer_path = cls.model_referers.get(model, f"/?model={model}")
referer_url = f"{cls.url}{referer_path}"
common_headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/129.0.0.0 Safari/537.36'
}
headers_api_chat = {
'Content-Type': 'application/json',
'Referer': referer_url
}
headers_api_chat_combined = {**common_headers, **headers_api_chat}
payload_api_chat = {
"messages": [
{
"id": chat_id,
"content": formatted_prompt,
"role": "user"
}
],
"id": chat_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": agent_mode,
"trendingAgentMode": trending_agent_mode,
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": websearch,
"userSelectedModel": cls.userSelectedModel.get(model, model)
}
async with ClientSession(headers=common_headers) as session:
try:
async with session.post(
cls.api_endpoint,
headers=headers_api_chat_combined,
json=payload_api_chat,
proxy=proxy
) as response_api_chat:
response_api_chat.raise_for_status()
text = await response_api_chat.text()
cleaned_response = cls.clean_response(text)
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": cleaned_response
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": sum(len(msg['content'].split()) for msg in messages),
"completion_tokens": len(cleaned_response.split()),
"total_tokens": sum(len(msg['content'].split()) for msg in messages) + len(cleaned_response.split())
}
}
return response_data
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
try:
error_response = await e.response.text()
cleaned_error = cls.clean_response(error_response)
error_text += f" - {cleaned_error}"
except Exception:
pass
raise HTTPException(status_code=e.status, detail=error_text)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error during /api/chat request: {str(e)}")
# FastAPI app setup
app = FastAPI()
# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
asyncio.create_task(cleanup_rate_limit_stores())
logger.info("Started rate limit store cleanup task.")
# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
client_ip = request.client.host
# Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
if request.method == "POST" and request.url.path == "/v1/chat/completions":
content_type = request.headers.get("Content-Type")
if content_type != "application/json":
logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
return JSONResponse(
status_code=400,
content={
"error": {
"message": "Content-Type must be application/json",
"type": "invalid_request_error",
"param": None,
"code": None
}
},
)
response = await call_next(request)
return response
# Request Models
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
client_ip = req.client.host
# Redact user messages only for logging purposes
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")
try:
# Validate that the requested model is available
if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
raise HTTPException(status_code=400, detail="Requested model is not available.")
# Process the request with actual message content, but don't log it
response_content = await Blackbox.generate_response(
model=request.model,
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
temperature=request.temperature,
max_tokens=request.max_tokens
)
logger.info(f"Completed response generation for API key: {api_key} | IP: {client_ip}")
return response_content
except HTTPException as he:
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
raise he
except Exception as e:
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
raise HTTPException(status_code=500, detail=str(e))
# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
client_ip = req.client.host
logger.info(f"Fetching available models from IP: {client_ip}")
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
client_ip = req.client.host
logger.info(f"Health check requested from IP: {client_ip}")
return {"status": "ok"}
# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
client_ip = request.client.host
logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
return JSONResponse(
status_code=exc.status_code,
content={
"error": {
"message": exc.detail,
"type": "invalid_request_error",
"param": None,
"code": None
}
},
)
|