Spaces:
mxrkai
/
Runtime error

File size: 14,852 Bytes
9cf0d3b
 
 
34226fa
b27d93f
1d3da36
18d089c
479563b
18d089c
479563b
 
 
2722c48
479563b
628f747
18d089c
 
 
 
 
 
 
 
1d3da36
 
34226fa
 
 
 
18d089c
34226fa
 
479563b
7937c8d
479563b
 
a1ae61d
628f747
479563b
 
 
3908754
479563b
3908754
479563b
 
 
 
 
7937c8d
18d089c
479563b
a1ae61d
 
1571fac
 
 
479563b
1571fac
479563b
1571fac
18d089c
1571fac
18d089c
1571fac
18d089c
bf65fef
1571fac
18d089c
1571fac
18d089c
1571fac
479563b
1571fac
80dc124
18d089c
 
479563b
 
1571fac
479563b
18d089c
479563b
 
18d089c
6b5328d
479563b
 
 
 
 
 
 
 
 
 
 
 
 
 
18d089c
 
 
 
 
 
 
 
 
 
479563b
18d089c
 
 
 
 
 
 
 
 
 
 
 
80dc124
18d089c
 
 
 
 
 
 
400d142
18d089c
 
1d3da36
18d089c
 
 
 
 
 
 
 
 
 
 
 
479563b
 
 
 
 
 
 
 
 
18d089c
 
 
1d3da36
479563b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b5328d
18d089c
 
 
479563b
18d089c
 
 
479563b
18d089c
 
 
 
628f747
479563b
 
6b5328d
7937c8d
479563b
 
7937c8d
 
 
479563b
 
 
 
2722c48
 
 
 
 
 
 
 
 
 
 
 
 
 
479563b
80a3863
 
479563b
 
 
34226fa
479563b
 
b27d93f
479563b
 
 
 
18d089c
479563b
34226fa
45670a8
479563b
18d089c
 
 
 
479563b
 
18d089c
479563b
 
 
 
18d089c
 
 
 
 
 
 
 
 
 
 
 
 
 
2722c48
1cfe11e
479563b
1cfe11e
18d089c
2722c48
18d089c
479563b
 
 
 
 
 
 
 
 
 
 
 
 
 
18d089c
479563b
 
 
 
 
 
18d089c
 
 
 
 
 
 
 
 
34226fa
479563b
 
18d089c
 
 
479563b
 
 
 
 
 
 
 
18d089c
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import re
import random
import string
import uuid
import json
import logging
import asyncio
import base64
from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from typing import List, Dict, Any, Optional, AsyncGenerator
from datetime import datetime
from fastapi.responses import StreamingResponse

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# Proper implementation for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, data_uri: str, alt: str):
        self.data_uri = data_uri
        self.alt = alt

def to_data_uri(image: bytes, mime_type: str = "image/png") -> str:
    encoded = base64.b64encode(image).decode('utf-8')
    return f"data:{mime_type};base64,{encoded}"

def decode_base64_image(data_uri: str) -> bytes:
    try:
        header, encoded = data_uri.split(",", 1)
        return base64.b64decode(encoded)
    except Exception as e:
        logger.error(f"Error decoding base64 image: {e}")
        raise e

class Blackbox:
    # ... [existing Blackbox class definition]

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Optional[str] = None,  # Expecting a base64 string
        image_name: Optional[str] = None,
        webSearchMode: bool = False,
        **kwargs
    ) -> AsyncGenerator[Any, None]:
        model = cls.get_model(model)
        logger.info(f"Selected model: {model}")

        if not cls.working or model not in cls.models:
            logger.error(f"Model {model} is not working or not supported.")
            raise ModelNotWorkingException(model)
        
        headers = {
            # ... [existing headers]
        }

        if model in cls.model_prefixes:
            prefix = cls.model_prefixes[model]
            if not messages[0]['content'].startswith(prefix):
                logger.debug(f"Adding prefix '{prefix}' to the first message.")
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
        messages[-1]['id'] = random_id
        messages[-1]['role'] = 'user'
        
        if image is not None:
            try:
                image_bytes = decode_base64_image(image)
                data_uri = to_data_uri(image_bytes)
                messages[-1]['data'] = {
                    'fileText': '',
                    'imageBase64': data_uri,
                    'title': image_name
                }
                messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
                logger.debug("Image data added to the message.")
            except Exception as e:
                logger.error(f"Failed to decode base64 image: {e}")
                raise HTTPException(status_code=400, detail="Invalid image data provided.")
        
        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 99999999,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "userSelectedModel": None,
            "webSearchMode": webSearchMode,
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        logger.info(f"Sending request to {cls.api_endpoint} with data: {data}")

        timeout = ClientTimeout(total=60)  # Set an appropriate timeout
        retry_attempts = 10  # Set the number of retry attempts

        for attempt in range(retry_attempts):
            try:
                async with ClientSession(headers=headers, timeout=timeout) as session:
                    async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        logger.info(f"Received response with status {response.status}")
                        if model == 'ImageGeneration':
                            response_text = await response.text()
                            url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                            if url_match:
                                image_url = url_match.group(0)
                                logger.info(f"Image URL found: {image_url}")
                                
                                # Fetch the image data
                                async with session.get(image_url) as img_response:
                                    img_response.raise_for_status()
                                    image_bytes = await img_response.read()
                                    data_uri = to_data_uri(image_bytes)
                                    logger.info("Image converted to base64 data URI.")
                                
                                yield ImageResponse(data_uri, alt=messages[-1]['content'])
                            else:
                                logger.error("Image URL not found in the response.")
                                raise Exception("Image URL not found in the response")
                        else:
                            full_response = ""
                            search_results_json = ""
                            try:
                                async for chunk, _ in response.content.iter_chunks():
                                    if chunk:
                                        decoded_chunk = chunk.decode(errors='ignore')
                                        decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                                        if decoded_chunk.strip():
                                            if '$~~~$' in decoded_chunk:
                                                search_results_json += decoded_chunk
                                            else:
                                                full_response += decoded_chunk
                                                yield decoded_chunk
                                logger.info("Finished streaming response chunks.")
                            except Exception as e:
                                logger.exception("Error while iterating over response chunks.")
                                raise e
                            if data["webSearchMode"] and search_results_json:
                                match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
                                if match:
                                    try:
                                        search_results = json.loads(match.group(1))
                                        formatted_results = "\n\n**Sources:**\n"
                                        for i, result in enumerate(search_results[:5], 1):
                                            formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
                                        logger.info("Formatted search results.")
                                        yield formatted_results
                                    except json.JSONDecodeError as je:
                                        logger.error("Failed to parse search results JSON.")
                                        raise je
                break  # Exit the retry loop if successful
            except ClientError as ce:
                logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=502, detail="Error communicating with the external API. | NiansuhAI")
            except asyncio.TimeoutError:
                logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=504, detail="External API request timed out. | NiansuhAI")
            except Exception as e:
                logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=500, detail=str(e))

# FastAPI app setup
app = FastAPI()

class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    stream: Optional[bool] = False
    webSearchMode: Optional[bool] = False
    image: Optional[str] = None  # Add image field for base64 data

def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,
    }

@app.post("/niansuhai/v1/chat/completions")
async def chat_completions(request: ChatRequest, req: Request):
    logger.info(f"Received chat completions request: {request}")
    try:
        messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
        
        async_generator = Blackbox.create_async_generator(
            model=request.model,
            messages=messages,
            proxy=None,  # Pass proxy if needed
            image=request.image,  # Pass the base64 image
            image_name=None,
            webSearchMode=request.webSearchMode
        )

        if request.stream:
            async def generate():
                try:
                    async for chunk in async_generator:
                        if isinstance(chunk, ImageResponse):
                            image_markdown = f"![{chunk.alt}]({chunk.data_uri})"
                            response_chunk = create_response(image_markdown, request.model)
                        else:
                            response_chunk = create_response(chunk, request.model)
                        
                        # Yield each chunk in SSE format
                        yield f"data: {json.dumps(response_chunk)}\n\n"
                    
                    # Signal the end of the stream
                    yield "data: [DONE]\n\n"
                except HTTPException as he:
                    error_response = {"error": he.detail}
                    yield f"data: {json.dumps(error_response)}\n\n"
                except Exception as e:
                    logger.exception("Error during streaming response generation.")
                    error_response = {"error": str(e)}
                    yield f"data: {json.dumps(error_response)}\n\n"

            return StreamingResponse(generate(), media_type="text/event-stream")
        else:
            response_content = ""
            async for chunk in async_generator:
                if isinstance(chunk, ImageResponse):
                    response_content += f"![{chunk.alt}]({chunk.data_uri})\n"
                else:
                    response_content += chunk

            logger.info("Completed non-streaming response generation.")
            return {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "choices": [
                    {
                        "message": {
                            "role": "assistant",
                            "content": response_content
                        },
                        "finish_reason": "stop",
                        "index": 0
                    }
                ],
                "usage": {
                    "prompt_tokens": sum(len(msg['content'].split()) for msg in messages),
                    "completion_tokens": len(response_content.split()),
                    "total_tokens": sum(len(msg['content'].split()) for msg in messages) + len(response_content.split())
                },
            }
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail}")
        raise he
    except Exception as e:
        logger.exception("An unexpected error occurred while processing the chat completions request.")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/niansuhai/v1/models")
async def get_models():
    logger.info("Fetching available models.")
    return {"data": [{"id": model} for model in Blackbox.models]}

# Additional endpoints for better functionality
@app.get("/niansuhai/v1/health")
async def health_check():
    """Health check endpoint to verify the service is running."""
    return {"status": "ok"}

@app.get("/niansuhai/v1/models/{model}/status")
async def model_status(model: str):
    """Check if a specific model is available."""
    if model in Blackbox.models:
        return {"model": model, "status": "available"}
    elif model in Blackbox.model_aliases:
        actual_model = Blackbox.model_aliases[model]
        return {"model": actual_model, "status": "available via alias"}
    else:
        raise HTTPException(status_code=404, detail="Model not found")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)