File size: 5,665 Bytes
5b9363f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# api/gizai.py

from __future__ import annotations

import json
from aiohttp import ClientSession
from typing import AsyncGenerator, Union

from .models import AsyncResult, Messages, ImageResponse
from .utils import strip_model_prefix

class AsyncGeneratorProvider:
    @classmethod
    async def create_async_generator(cls, *args, **kwargs) -> AsyncGenerator:
        """Abstract method to create an asynchronous generator."""
        raise NotImplementedError

class ProviderModelMixin:
    @classmethod
    def get_model(cls, model: str) -> str:
        """Abstract method to get the actual model name."""
        raise NotImplementedError

class GizAI(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://app.giz.ai/assistant/"
    api_endpoint = "https://app.giz.ai/api/data/users/inferenceServer.infer"
    working = True
    
    supports_system_message = True
    supports_message_history = True
    
    # Chat models
    default_model = 'chat-gemini-flash'
    chat_models = [
        default_model,
        'chat-gemini-pro',
        'chat-gpt4m',
        'chat-gpt4',
        'claude-sonnet',
        'claude-haiku',
        'llama-3-70b',
        'llama-3-8b',
        'mistral-large',
        'chat-o1-mini'
    ]

    # Image models
    image_models = [
        'flux1',
        'sdxl',
        'sd',
        'sd35',
    ]

    models = [*chat_models, *image_models]
    
    model_aliases = {
        # Chat model aliases
        "gemini-flash": "chat-gemini-flash",
        "gemini-pro": "chat-gemini-pro",
        "gpt-4o-mini": "chat-gpt4m",
        "gpt-4o": "chat-gpt4",
        "claude-3.5-sonnet": "claude-sonnet",
        "claude-3-haiku": "claude-haiku",
        "llama-3.1-70b": "llama-3-70b",
        "llama-3.1-8b": "llama-3-8b",
        "o1-mini": "chat-o1-mini",
        # Image model aliases
        "sd-1.5": "sd",
        "sd-3.5": "sd35",
        "flux-schnell": "flux1",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        """Retrieve the actual model name, handling aliases."""
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    def is_image_model(cls, model: str) -> bool:
        """Determine if the given model is an image generation model."""
        return model in cls.image_models

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        **kwargs
    ) -> AsyncResult:
        """Create an asynchronous generator for processing requests."""
        model = cls.get_model(model)
        
        headers = {
            'Accept': 'application/json, text/plain, */*',
            'Accept-Language': 'en-US,en;q=0.9',
            'Cache-Control': 'no-cache',
            'Connection': 'keep-alive',
            'Content-Type': 'application/json',
            'Origin': 'https://app.giz.ai',
            'Pragma': 'no-cache',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
            'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
            'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"'
        }

        async with ClientSession() as session:
            if cls.is_image_model(model):
                # Image generation
                prompt = messages[-1]["content"]
                data = {
                    "model": model,
                    "input": {
                        "width": "1024",
                        "height": "1024",
                        "steps": 4,
                        "output_format": "webp",
                        "batch_size": 1,
                        "mode": "plan",
                        "prompt": prompt
                    }
                }
                async with session.post(
                    cls.api_endpoint,
                    headers=headers,
                    data=json.dumps(data),
                    proxy=proxy
                ) as response:
                    response.raise_for_status()
                    response_data = await response.json()
                    if response_data.get('status') == 'completed' and response_data.get('output'):
                        for url in response_data['output']:
                            yield ImageResponse(images=url, alt="Generated Image")
            else:
                # Chat completion
                # Directly format the prompt without using a separate helper
                prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
                data = {
                    "model": model,
                    "input": {
                        "messages": [
                            {
                                "type": "human",
                                "content": prompt
                            }
                        ],
                        "mode": "plan"
                    },
                    "noStream": True
                }
                async with session.post(
                    cls.api_endpoint,
                    headers=headers,
                    data=json.dumps(data),
                    proxy=proxy
                ) as response:
                    response.raise_for_status()
                    result = await response.json()
                    yield result.get('output', '')