File size: 7,841 Bytes
81ddbf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# api/providers/blackboxai.py
from __future__ import annotations
import json
from datetime import datetime
import uuid
from typing import Any, Dict, Optional
import httpx
from api.config import (
MODEL_MAPPING,
headers,
BASE_URL,
MODEL_PREFIXES,
MODEL_REFERERS,
)
from api.models import ChatRequest
from api.logger import setup_logger
from api.image import ImageResponse # Assuming similar structure to GizAI
from api.typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
logger = setup_logger(__name__)
class BlackBoxAI(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_system_message = True
supports_message_history = True
# Define BlackBoxAI models
default_model = 'blackboxai'
chat_models = [
'blackboxai',
'blackboxai-pro',
'flux',
'llama-3.1-8b',
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
'RepoMap',
'gemini-1.5-pro-latest',
'gemini-1.5-pro',
'claude-3-5-sonnet-20240620',
'claude-3-5-sonnet',
'Niansuh',
]
image_models = [] # Add image models if applicable
models = chat_models + image_models
model_aliases = {
# Add aliases if any
}
@classmethod
def get_model(cls, model: str) -> str:
return MODEL_MAPPING.get(model, cls.default_model)
@classmethod
def is_image_model(cls, model: str) -> bool:
return model in cls.image_models
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
model_prefix = MODEL_PREFIXES.get(model, "")
referer_path = MODEL_REFERERS.get(model, f"/?model={model}")
referer_url = f"{BASE_URL}{referer_path}"
# Update headers with dynamic Referer
dynamic_headers = headers.copy()
dynamic_headers['Referer'] = referer_url
json_data = {
"messages": [cls.message_to_dict(msg, model_prefix) for msg in messages],
"stream": kwargs.get('stream', False),
"temperature": kwargs.get('temperature', 0.7),
"top_p": kwargs.get('top_p', 0.9),
"max_tokens": kwargs.get('max_tokens', 99999999),
}
async with httpx.AsyncClient() as client:
try:
if json_data.get("stream"):
async with client.stream(
"POST",
cls.api_endpoint,
headers=dynamic_headers,
json=json_data,
timeout=100,
) as response:
response.raise_for_status()
async for line in response.aiter_lines():
timestamp = int(datetime.now().timestamp())
if line:
content = line
if content.startswith("$@$v=undefined-rv1$@$"):
content = content[21:]
# Strip the model prefix from the response content
cleaned_content = cls.strip_model_prefix(content, model_prefix)
yield f"data: {json.dumps(cls.create_chat_completion_data(cleaned_content, model, timestamp))}\n\n"
yield f"data: {json.dumps(cls.create_chat_completion_data('', model, timestamp, 'stop'))}\n\n"
yield "data: [DONE]\n\n"
else:
response = await client.post(
cls.api_endpoint,
headers=dynamic_headers,
json=json_data,
timeout=100,
)
response.raise_for_status()
full_response = response.text
if full_response.startswith("$@$v=undefined-rv1$@$"):
full_response = full_response[21:]
# Strip the model prefix from the full response
cleaned_full_response = cls.strip_model_prefix(full_response, model_prefix)
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": cleaned_full_response},
"finish_reason": "stop",
}
],
"usage": None,
}
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error occurred: {e}")
raise HTTPException(status_code=e.response.status_code, detail=str(e))
except httpx.RequestError as e:
logger.error(f"Error occurred during request: {e}")
raise HTTPException(status_code=500, detail=str(e))
@staticmethod
def message_to_dict(message, model_prefix: Optional[str] = None):
if isinstance(message["content"], str):
content = message["content"]
if model_prefix:
content = f"{model_prefix} {content}"
return {"role": message["role"], "content": content}
elif isinstance(message["content"], list) and len(message["content"]) == 2:
content = message["content"][0]["text"]
if model_prefix:
content = f"{model_prefix} {content}"
return {
"role": message["role"],
"content": content,
"data": {
"imageBase64": message["content"][1]["image_url"]["url"],
"fileText": "",
"title": "snapshot",
},
}
else:
return {"role": message["role"], "content": message["content"]}
@staticmethod
def strip_model_prefix(content: str, model_prefix: Optional[str] = None) -> str:
"""Remove the model prefix from the response content if present."""
if model_prefix and content.startswith(model_prefix):
logger.debug(f"Stripping prefix '{model_prefix}' from content.")
return content[len(model_prefix):].strip()
logger.debug("No prefix to strip from content.")
return content
@staticmethod
def create_chat_completion_data(
content: str, model: str, timestamp: int, finish_reason: Optional[str] = None
) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": None,
}
|