File size: 7,841 Bytes
81ddbf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# api/providers/blackboxai.py

from __future__ import annotations

import json
from datetime import datetime
import uuid
from typing import Any, Dict, Optional

import httpx
from api.config import (
    MODEL_MAPPING,
    headers,
    BASE_URL,
    MODEL_PREFIXES,
    MODEL_REFERERS,
)
from api.models import ChatRequest
from api.logger import setup_logger
from api.image import ImageResponse  # Assuming similar structure to GizAI
from api.typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin

logger = setup_logger(__name__)

class BlackBoxAI(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True

    supports_system_message = True
    supports_message_history = True

    # Define BlackBoxAI models
    default_model = 'blackboxai'
    chat_models = [
        'blackboxai',
        'blackboxai-pro',
        'flux',
        'llama-3.1-8b',
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
        'RepoMap',
        'gemini-1.5-pro-latest',
        'gemini-1.5-pro',
        'claude-3-5-sonnet-20240620',
        'claude-3-5-sonnet',
        'Niansuh',
    ]

    image_models = []  # Add image models if applicable

    models = chat_models + image_models

    model_aliases = {
        # Add aliases if any
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        return MODEL_MAPPING.get(model, cls.default_model)

    @classmethod
    def is_image_model(cls, model: str) -> bool:
        return model in cls.image_models

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)
        model_prefix = MODEL_PREFIXES.get(model, "")
        referer_path = MODEL_REFERERS.get(model, f"/?model={model}")
        referer_url = f"{BASE_URL}{referer_path}"

        # Update headers with dynamic Referer
        dynamic_headers = headers.copy()
        dynamic_headers['Referer'] = referer_url

        json_data = {
            "messages": [cls.message_to_dict(msg, model_prefix) for msg in messages],
            "stream": kwargs.get('stream', False),
            "temperature": kwargs.get('temperature', 0.7),
            "top_p": kwargs.get('top_p', 0.9),
            "max_tokens": kwargs.get('max_tokens', 99999999),
        }

        async with httpx.AsyncClient() as client:
            try:
                if json_data.get("stream"):
                    async with client.stream(
                        "POST",
                        cls.api_endpoint,
                        headers=dynamic_headers,
                        json=json_data,
                        timeout=100,
                    ) as response:
                        response.raise_for_status()
                        async for line in response.aiter_lines():
                            timestamp = int(datetime.now().timestamp())
                            if line:
                                content = line
                                if content.startswith("$@$v=undefined-rv1$@$"):
                                    content = content[21:]
                                # Strip the model prefix from the response content
                                cleaned_content = cls.strip_model_prefix(content, model_prefix)
                                yield f"data: {json.dumps(cls.create_chat_completion_data(cleaned_content, model, timestamp))}\n\n"

                        yield f"data: {json.dumps(cls.create_chat_completion_data('', model, timestamp, 'stop'))}\n\n"
                        yield "data: [DONE]\n\n"
                else:
                    response = await client.post(
                        cls.api_endpoint,
                        headers=dynamic_headers,
                        json=json_data,
                        timeout=100,
                    )
                    response.raise_for_status()
                    full_response = response.text
                    if full_response.startswith("$@$v=undefined-rv1$@$"):
                        full_response = full_response[21:]
                    # Strip the model prefix from the full response
                    cleaned_full_response = cls.strip_model_prefix(full_response, model_prefix)
                    return {
                        "id": f"chatcmpl-{uuid.uuid4()}",
                        "object": "chat.completion",
                        "created": int(datetime.now().timestamp()),
                        "model": model,
                        "choices": [
                            {
                                "index": 0,
                                "message": {"role": "assistant", "content": cleaned_full_response},
                                "finish_reason": "stop",
                            }
                        ],
                        "usage": None,
                    }
            except httpx.HTTPStatusError as e:
                logger.error(f"HTTP error occurred: {e}")
                raise HTTPException(status_code=e.response.status_code, detail=str(e))
            except httpx.RequestError as e:
                logger.error(f"Error occurred during request: {e}")
                raise HTTPException(status_code=500, detail=str(e))

    @staticmethod
    def message_to_dict(message, model_prefix: Optional[str] = None):
        if isinstance(message["content"], str):
            content = message["content"]
            if model_prefix:
                content = f"{model_prefix} {content}"
            return {"role": message["role"], "content": content}
        elif isinstance(message["content"], list) and len(message["content"]) == 2:
            content = message["content"][0]["text"]
            if model_prefix:
                content = f"{model_prefix} {content}"
            return {
                "role": message["role"],
                "content": content,
                "data": {
                    "imageBase64": message["content"][1]["image_url"]["url"],
                    "fileText": "",
                    "title": "snapshot",
                },
            }
        else:
            return {"role": message["role"], "content": message["content"]}

    @staticmethod
    def strip_model_prefix(content: str, model_prefix: Optional[str] = None) -> str:
        """Remove the model prefix from the response content if present."""
        if model_prefix and content.startswith(model_prefix):
            logger.debug(f"Stripping prefix '{model_prefix}' from content.")
            return content[len(model_prefix):].strip()
        logger.debug("No prefix to strip from content.")
        return content

    @staticmethod
    def create_chat_completion_data(
        content: str, model: str, timestamp: int, finish_reason: Optional[str] = None
    ) -> Dict[str, Any]:
        return {
            "id": f"chatcmpl-{uuid.uuid4()}",
            "object": "chat.completion.chunk",
            "created": timestamp,
            "model": model,
            "choices": [
                {
                    "index": 0,
                    "delta": {"content": content, "role": "assistant"},
                    "finish_reason": finish_reason,
                }
            ],
            "usage": None,
        }