Spaces:
Running
Running
File size: 20,377 Bytes
c603c49 8f7ca1c c603c49 bedc20e c603c49 8e52293 c603c49 8e52293 c603c49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import os
from huggingface_hub import snapshot_download
import streamlit as st
from utils.help import get_intro, get_disclaimer
from utils.format import sec_to_time, fix_latex, get_youtube_embed
from utils.rag_utils import load_youtube_data, load_book_data, load_summary, embed_question_sentence_transformer, fixed_knn_retrieval, get_random_question
from utils.system_prompts import get_expert_system_prompt, get_synthesis_user_prompt, get_synthesis_system_prompt
from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration
from utils.endpoint_utils import get_inference_endpoint_response, parse_thinking_response, get_custom_inference_endpoint_response
st.set_page_config(page_title="AI University")
st.markdown("""
<style>
.video-wrapper {
position: relative;
padding-bottom: 56.25%;
height: 0;
}
.video-wrapper iframe {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""", unsafe_allow_html=True)
# ---------------------------------------
# paths
# ---------------------------------------
HOME = "."
data_dir = HOME +"/data"
private_data_dir = HOME + "/private_data" # Relative path in your Space
# getting private data
os.makedirs(private_data_dir, exist_ok=True)
token = os.getenv("HF_API_KEY")
local_repo_path = snapshot_download(
repo_id="my-ai-university/data",
use_auth_token=token,
repo_type="dataset",
local_dir=private_data_dir,
)
adapter_path = HOME + "/LLaMA-TOMMI-1.0/"
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
# ---------------------------------------
st.title(":red[AI University] :gray[/] FEM")
st.markdown(get_intro(), unsafe_allow_html=True)
st.markdown(" ")
st.markdown(" ")
# Sidebar for settings
with st.sidebar:
st.header("Settings")
with st.expander('Embedding model', expanded=True):
embedding_model = st.selectbox("Choose content embedding model", [
"text-embedding-3-small",
"all-MiniLM-L6-v2",
])
st.divider()
st.write('**Video lectures**')
if embedding_model == "all-MiniLM-L6-v2":
yt_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
elif embedding_model == "text-embedding-3-small":
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
yt_chunk_tokens = yt_token_choice
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
top_k_YT = st.slider("Number of content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
yt_overlap_tokens = yt_chunk_tokens // 4
st.divider()
st.write('**Textbook**')
show_textbook = False
if embedding_model == "all-MiniLM-L6-v2":
latex_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
elif embedding_model == "text-embedding-3-small":
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
latex_chunk_tokens = latex_token_choice
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
top_k_Latex = st.slider("Number of content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
latex_overlap_tokens = 0
st.write(' ')
with st.expander('Expert model', expanded=True):
if 'activate_expert' in st.session_state:
st.session_state.activate_expert = st.toggle("Use expert model", value=st.session_state.activate_expert)
else:
st.session_state.activate_expert = st.toggle("Use expert model", value=True)
st.session_state.expert_model = st.selectbox(
"Choose the LLM model",
["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B", "gpt-4o-mini"],
index=0, # Default to LLaMA-TOMMI-1.0-11B
key='a1model'
)
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]:
expert_do_sample = st.toggle("Enable Sampling", value=False, key='expert_sample')
if expert_do_sample:
expert_temperature = st.slider("Temperature", 0.0, 1.0, 0.2, key='expert_temp')
expert_top_k = st.slider("Top K", 0, 100, 50, key='expert_top_k')
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.1, key='expert_top_p')
else:
expert_num_beams = st.slider("Num Beams", 1, 4, 1, key='expert_num_beams')
expert_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='expert_max_new_tokens')
else:
expert_api_temperature = st.slider("Temperature", 0.0, 1.0, 0.2, key='a1t')
expert_api_top_p = st.slider("Top P", 0.0, 1.0, 0.1, key='a1p')
with st.expander('Synthesis model', expanded=True):
st.session_state.synthesis_model = st.selectbox(
"Choose the LLM model",
["DeepSeek-R1-0528-Qwen3-8B", "gpt-4o-mini", "gpt-4.1-mini"],
index=0, # Default to DeepSeek-R1
key='a2model'
)
if st.session_state.synthesis_model == "DeepSeek-R1-0528-Qwen3-8B":
synthesis_deepseek_temperature = st.slider("Temperature", 0.0, 1.0, 0.2, key='synthesis_deepseek_temperature')
synthesis_deepseek_top_p = st.slider("Top P", 0.0, 1.0, 0.1, key='synthesis_deepseek_top_p')
synthesis_deepseek_max_tokens = st.slider("Max Tokens", 1000, 4000, 10000, step=100, key='synthesis_deepseek_max_tokens')
else:
synthesis_api_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t')
synthesis_api_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p')
# Main content area
if "question" not in st.session_state:
st.session_state.question = ""
text_area_placeholder = st.empty()
question_help = "Including details or instructions improves the answer."
st.session_state.question = text_area_placeholder.text_area(
"**Enter your query about Finite Element Method**",
height=120,
value=st.session_state.question,
help=question_help
)
_, col1, col2, _ = st.columns([4, 2, 4, 3])
with col1:
submit_button_placeholder = st.empty()
with col2:
if st.button("π² Random Question"):
while True:
random_question = get_random_question(data_dir + "/questions.txt")
if random_question != st.session_state.question:
break
st.session_state.question = random_question
text_area_placeholder.text_area(
"**Enter your query about Finite Element Method:**",
height=120,
value=st.session_state.question,
help=question_help
)
# Load YouTube and LaTeX data
text_data_YT, context_embeddings_YT = load_youtube_data(data_dir, embedding_model, yt_chunk_tokens, yt_overlap_tokens)
text_data_Latex, context_embeddings_Latex = load_book_data(private_data_dir, embedding_model, latex_chunk_tokens, latex_overlap_tokens)
summary = load_summary(data_dir + '/KG_FEM_summary.json')
# Initialize session state variables
if 'question_answered' not in st.session_state:
st.session_state.question_answered = False
if 'context_by_video' not in st.session_state:
st.session_state.context_by_video = {}
if 'context_by_section' not in st.session_state:
st.session_state.context_by_section = {}
if 'answer' not in st.session_state:
st.session_state.answer = ""
if 'thinking' not in st.session_state:
st.session_state.thinking = ""
if 'playing_video_id' not in st.session_state:
st.session_state.playing_video_id = None
if 'yt_context_for_display' not in st.session_state:
st.session_state.yt_context_for_display = ""
if 'latex_context_count' not in st.session_state:
st.session_state.latex_context_count = 0
if 'video_context_count' not in st.session_state:
st.session_state.video_context_count = 0
if submit_button_placeholder.button("AI Answer", type="primary"):
if st.session_state.question == "":
st.markdown("")
st.write("Please enter a query. :smirk:")
st.session_state.question_answered = False
else:
with st.spinner("Finding relevant contexts..."):
if embedding_model == "all-MiniLM-L6-v2":
question_embedding = embed_question_sentence_transformer(st.session_state.question, model_name="all-MiniLM-L6-v2")
elif embedding_model == "text-embedding-3-small":
question_embedding = embed_question_openai(st.session_state.question, embedding_model)
initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])
st.session_state.context_by_video = {}
for context_item in relevant_contexts_YT:
video_id = context_item['video_id']
if video_id not in st.session_state.context_by_video:
st.session_state.context_by_video[video_id] = []
st.session_state.context_by_video[video_id].append(context_item)
st.session_state.video_context_count = len(st.session_state.context_by_video)
st.session_state.context_by_section = {}
for context_item in relevant_contexts_Latex:
section_id = context_item['section']
if section_id not in st.session_state.context_by_section:
st.session_state.context_by_section[section_id] = []
st.session_state.context_by_section[section_id].append(context_item)
# Build context strings
yt_context_string = ''
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
yt_context_string += f"--- Video {i}: {contexts[0]['title']} ---\n"
for context_item in contexts:
start_time = int(context_item['start'])
yt_context_string += f"Timestamp {sec_to_time(start_time)}: {context_item['text']}\n\n"
latex_context_string = ''
if top_k_Latex > 0:
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
latex_context_string += f'--- Textbook Section {i} ({section_id}) ---\n'
for context_item in contexts:
latex_context_string += context_item['text'] + '\n\n'
context_for_llm = yt_context_string + latex_context_string
st.session_state.yt_context_for_display = fix_latex(yt_context_string)
st.session_state.latex_context_count = len(st.session_state.context_by_section)
with st.spinner("Answering the question..."):
if st.session_state.activate_expert:
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]:
if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B":
use_expert = True
elif st.session_state.expert_model == "LLaMA-3.2-11B":
use_expert = False
messages = [
{"role": "system", "content": get_expert_system_prompt()},
{"role": "user", "content": st.session_state.question}
]
expert_answer = get_custom_inference_endpoint_response(
messages=messages,
use_expert=use_expert,
tokenizer_max_length=500,
do_sample=expert_do_sample,
temperature=expert_temperature if expert_do_sample else None,
top_k=expert_top_k if expert_do_sample else None,
top_p=expert_top_p if expert_do_sample else None,
num_beams=expert_num_beams if not expert_do_sample else 1,
max_new_tokens=expert_max_new_tokens
)
else:
expert_answer = openai_domain_specific_answer_generation(
get_expert_system_prompt(),
st.session_state.question,
model=st.session_state.expert_model,
temperature=expert_api_temperature,
top_p=expert_api_top_p
)
st.session_state.expert_answer = fix_latex(expert_answer)
else:
st.session_state.expert_answer = 'No Expert Answer. Only use the context.'
if st.session_state.synthesis_model == "DeepSeek-R1-0528-Qwen3-8B":
messages = [
{"role": "system", "content": get_synthesis_system_prompt("Finite Element Method")},
{"role": "user", "content": get_synthesis_user_prompt(st.session_state.question, st.session_state.expert_answer, context_for_llm)}
]
raw_synthesis_answer = get_inference_endpoint_response(
model="tgi",#"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
messages=messages,
temperature=synthesis_deepseek_temperature,
top_p=synthesis_deepseek_top_p,
max_tokens=synthesis_deepseek_max_tokens
)
# print(raw_synthesis_answer)
thinking, synthesis_answer = parse_thinking_response(raw_synthesis_answer)
st.session_state.thinking = thinking
else:
synthesis_answer = openai_context_integration(
get_synthesis_system_prompt("Finite Element Method"),
st.session_state.question,
st.session_state.expert_answer,
context_for_llm,
model=st.session_state.synthesis_model,
temperature=synthesis_api_temperature,
top_p=synthesis_api_top_p
)
# quick check after getting the answer
if synthesis_answer.split()[0] == "NOT_ENOUGH_INFO":
st.markdown("")
st.markdown("#### Query", unsafe_allow_html=True)
st.markdown(fix_latex(st.session_state.question))
st.markdown("#### Final Answer")
st.write(":smiling_face_with_tear:")
st.markdown(synthesis_answer.split('NOT_ENOUGH_INFO')[1])
st.divider()
st.caption(get_disclaimer())
st.session_state.question_answered = False
st.stop()
else:
st.session_state.answer = fix_latex(synthesis_answer)
st.session_state.question_answered = True
if st.session_state.question_answered:
st.divider()
st.markdown("#### Query", unsafe_allow_html=True)
st.markdown(fix_latex(st.session_state.question))
# st.markdown(" ")
st.markdown("#### Inference and Reasoning")
# Expander for Initial Expert Answer
if st.session_state.activate_expert and 'expert_answer' in st.session_state:
with st.expander("Initial Expert Answer", expanded=False):
st.info(f"This is the initial answer from the expert model ({st.session_state.expert_model}), used as a starting point for the final synthesis.", icon="π§βπ«")
st.markdown(st.session_state.expert_answer)
# Expander for Retrieved Context
if 'yt_context_for_display' in st.session_state and st.session_state.yt_context_for_display:
with st.expander("Retrieved Context", expanded=False):
st.info("This is the raw context retrieved from the knowledge base to inform the final answer.", icon="π")
if 'video_context_count' in st.session_state and st.session_state.video_context_count > 0:
st.success(f"Found {st.session_state.video_context_count} relevant video transcript(s) containing retrieved content.", icon="πΊ")
st.markdown(st.session_state.yt_context_for_display)
if 'latex_context_count' in st.session_state and st.session_state.latex_context_count > 0:
st.info(f"Additionally, {st.session_state.latex_context_count} relevant sections were found in the textbook: *The Finite Element Method: Linear Static and Dynamic Finite Element Analysis* by Thomas J. R. Hughes Β· 2012.", icon="π")
# Expander for Model's Thinking Process
if st.session_state.synthesis_model == "DeepSeek-R1-0528-Qwen3-8B" and 'thinking' in st.session_state and st.session_state.thinking:
with st.expander(":blue[**Model's Thinking Process**]", expanded=False):
st.info(f"This is the reasoning from the synthesis model ({st.session_state.synthesis_model}) used to synthesize the final answer.", icon="π€")
st.markdown(st.session_state.thinking)
# st.markdown("---")
st.markdown("#### Final Answer")
st.markdown(st.session_state.answer)
st.markdown(" ")
if top_k_YT > 0:
st.markdown("#### Retrieved content in lecture videos")
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
with st.container(border=True):
st.markdown(f"**Video {i} | {contexts[0]['title']}**")
video_placeholder = st.empty()
video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True)
st.markdown('')
with st.container(border=False):
st.markdown("Retrieved Times")
cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)])
for j, context_item in enumerate(contexts):
start_time = int(context_item['start'])
label = sec_to_time(start_time)
if cols[j].button(label, key=f"{video_id}_{start_time}"):
if st.session_state.playing_video_id is not None:
st.session_state.playing_video_id = None
video_placeholder.empty()
video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True)
st.session_state.playing_video_id = video_id
with st.expander("Video Summary", expanded=False):
st.markdown(summary[video_id])
if show_textbook and top_k_Latex > 0:
st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis")
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
st.markdown(f"**Section {i} | {section_id}**")
for context_item in contexts:
st.markdown(context_item['text'])
st.divider()
st.markdown(" ")
st.divider()
st.caption(get_disclaimer())
|