Commit
·
b849b51
1
Parent(s):
07c040d
add local model
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from sentence_transformers import SentenceTransformer
|
|
| 6 |
from openai import OpenAI
|
| 7 |
import random
|
| 8 |
import prompts
|
|
|
|
| 9 |
|
| 10 |
st.set_page_config(page_title="AI University")
|
| 11 |
|
|
@@ -70,6 +71,10 @@ def fixed_knn_retrieval(question_embedding, context_embeddings, top_k=5, min_k=1
|
|
| 70 |
def sec_to_time(start_time):
|
| 71 |
return f"{start_time // 60:02}:{start_time % 60:02}"
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
st.markdown("""
|
| 74 |
<style>
|
| 75 |
.video-wrapper {
|
|
@@ -161,22 +166,29 @@ with st.sidebar:
|
|
| 161 |
# latex_overlap_tokens = latex_chunk_tokens // 4
|
| 162 |
latex_overlap_tokens = 0
|
| 163 |
|
| 164 |
-
st.write(' ')
|
| 165 |
-
with st.expander('Expert model',expanded=False):
|
| 166 |
-
# st.write('**Expert model**')
|
| 167 |
-
# with st.container(border=True):
|
| 168 |
-
# Choose the LLM model
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
-
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
with st.expander('Synthesis model',expanded=False):
|
| 182 |
|
|
@@ -281,9 +293,41 @@ if submit_button_placeholder.button("AI Answer", type="primary"):
|
|
| 281 |
context += context_item['text'] + '\n\n'
|
| 282 |
|
| 283 |
if use_expert_answer:
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
else:
|
| 286 |
st.session_state.expert_answer = 'No Expert Answer. Only use the context.'
|
|
|
|
|
|
|
| 287 |
answer = prompts.openai_context_integration("Finite Element Method", st.session_state.question, st.session_state.expert_answer, context, model=model, temperature=integration_temperature, top_p=integration_top_p)
|
| 288 |
|
| 289 |
if answer.split()[0] == "NOT_ENOUGH_INFO":
|
|
|
|
| 6 |
from openai import OpenAI
|
| 7 |
import random
|
| 8 |
import prompts
|
| 9 |
+
from utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response
|
| 10 |
|
| 11 |
st.set_page_config(page_title="AI University")
|
| 12 |
|
|
|
|
| 71 |
def sec_to_time(start_time):
|
| 72 |
return f"{start_time // 60:02}:{start_time % 60:02}"
|
| 73 |
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
st.markdown("""
|
| 79 |
<style>
|
| 80 |
.video-wrapper {
|
|
|
|
| 166 |
# latex_overlap_tokens = latex_chunk_tokens // 4
|
| 167 |
latex_overlap_tokens = 0
|
| 168 |
|
| 169 |
+
st.write(' ')
|
| 170 |
+
with st.expander('Expert model', expanded=False):
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
use_expert_answer = st.toggle("Use expert answer", value=True)
|
| 173 |
+
show_expert_responce = st.toggle("Show initial expert answer", value=False)
|
| 174 |
|
| 175 |
+
model = st.selectbox("Choose the LLM model", ["gpt-4o-mini", "gpt-3.5-turbo", "llama-tommi-0.35"], key='a1model')
|
| 176 |
|
| 177 |
+
if model == "llama-tommi-0.35":
|
| 178 |
+
tommi_do_sample = st.toggle("Enable Sampling", value=True, key='tommi_sample')
|
| 179 |
|
| 180 |
+
if tommi_do_sample:
|
| 181 |
+
tommi_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='tommi_temp')
|
| 182 |
+
tommi_top_k = st.slider("Top K", 0, 100, 50, key='tommi_top_k')
|
| 183 |
+
tommi_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='tommi_top_p')
|
| 184 |
+
else:
|
| 185 |
+
tommi_num_beams = st.slider("Num Beams", 1, 10, 4, key='tommi_num_beams')
|
| 186 |
+
|
| 187 |
+
tommi_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='tommi_max_new_tokens')
|
| 188 |
+
else:
|
| 189 |
+
expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t')
|
| 190 |
+
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p')
|
| 191 |
+
expert_top_k = st.slider("Top K", 0, 100, 50, key='a1k')
|
| 192 |
|
| 193 |
with st.expander('Synthesis model',expanded=False):
|
| 194 |
|
|
|
|
| 293 |
context += context_item['text'] + '\n\n'
|
| 294 |
|
| 295 |
if use_expert_answer:
|
| 296 |
+
if model == "llama-tommi-0.35":
|
| 297 |
+
if 'tommi_model' not in st.session_state:
|
| 298 |
+
tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path)
|
| 299 |
+
st.session_state.tommi_model = tommi_model
|
| 300 |
+
st.session_state.tommi_tokenizer = tommi_tokenizer
|
| 301 |
+
|
| 302 |
+
messages = [
|
| 303 |
+
{"role": "system", "content": "You are an expert in Finite Element Methods."},
|
| 304 |
+
{"role": "user", "content": st.session_state.question}
|
| 305 |
+
]
|
| 306 |
+
|
| 307 |
+
st.session_state.expert_answer = generate_response(
|
| 308 |
+
model=st.session_state.tommi_model,
|
| 309 |
+
tokenizer=st.session_state.tommi_tokenizer,
|
| 310 |
+
messages=messages,
|
| 311 |
+
do_sample=tommi_do_sample,
|
| 312 |
+
temperature=tommi_temperature if tommi_do_sample else None,
|
| 313 |
+
top_k=tommi_top_k if tommi_do_sample else None,
|
| 314 |
+
top_p=tommi_top_p if tommi_do_sample else None,
|
| 315 |
+
num_beams=tommi_num_beams if not tommi_do_sample else 1,
|
| 316 |
+
max_new_tokens=tommi_max_new_tokens
|
| 317 |
+
)
|
| 318 |
+
else:
|
| 319 |
+
st.session_state.expert_answer = prompts.openai_domain_specific_answer_generation(
|
| 320 |
+
"Finite Element Method",
|
| 321 |
+
st.session_state.question,
|
| 322 |
+
model=model,
|
| 323 |
+
temperature=expert_temperature,
|
| 324 |
+
top_p=expert_top_p,
|
| 325 |
+
top_k=expert_top_k
|
| 326 |
+
)
|
| 327 |
else:
|
| 328 |
st.session_state.expert_answer = 'No Expert Answer. Only use the context.'
|
| 329 |
+
|
| 330 |
+
|
| 331 |
answer = prompts.openai_context_integration("Finite Element Method", st.session_state.question, st.session_state.expert_answer, context, model=model, temperature=integration_temperature, top_p=integration_top_p)
|
| 332 |
|
| 333 |
if answer.split()[0] == "NOT_ENOUGH_INFO":
|
utils.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, PreTrainedTokenizerFast
|
| 3 |
+
from peft import PeftModel
|
| 4 |
+
|
| 5 |
+
#-----------------------------------------
|
| 6 |
+
# Quantization Config
|
| 7 |
+
#-----------------------------------------
|
| 8 |
+
def get_bnb_config():
|
| 9 |
+
return BitsAndBytesConfig(
|
| 10 |
+
load_in_4bit=True,
|
| 11 |
+
bnb_4bit_quant_type="nf4",
|
| 12 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 13 |
+
bnb_4bit_use_double_quant=True,
|
| 14 |
+
bnb_4bit_quant_storage=torch.float16
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
#-----------------------------------------
|
| 18 |
+
# Base Model Loader
|
| 19 |
+
#-----------------------------------------
|
| 20 |
+
def load_base_model(base_model_path: str):
|
| 21 |
+
"""
|
| 22 |
+
Loads a base LLM model with 4-bit quantization and tokenizer.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
base_model_path (str): HF model path
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
model (AutoModelForCausalLM)
|
| 29 |
+
tokenizer (PreTrainedTokenizerFast)
|
| 30 |
+
"""
|
| 31 |
+
bnb_config = get_bnb_config()
|
| 32 |
+
|
| 33 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(base_model_path, return_tensors="pt")
|
| 34 |
+
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
base_model_path,
|
| 37 |
+
quantization_config=bnb_config,
|
| 38 |
+
trust_remote_code=True,
|
| 39 |
+
attn_implementation="eager",
|
| 40 |
+
torch_dtype=torch.float16
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
return model, tokenizer
|
| 44 |
+
|
| 45 |
+
#-----------------------------------------
|
| 46 |
+
# Fine-Tuned Model Loader
|
| 47 |
+
#-----------------------------------------
|
| 48 |
+
def load_fine_tuned_model(adapter_path: str, base_model_path: str):
|
| 49 |
+
"""
|
| 50 |
+
Loads the fine-tuned model by applying LoRA adapter to a base model.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
adapter_path (str): Local or HF adapter path
|
| 54 |
+
base_model_path (str): Base LLM model path
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
fine_tuned_model (PeftModel)
|
| 58 |
+
tokenizer (PreTrainedTokenizerFast)
|
| 59 |
+
"""
|
| 60 |
+
bnb_config = get_bnb_config()
|
| 61 |
+
|
| 62 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(base_model_path, return_tensors="pt")
|
| 63 |
+
|
| 64 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
+
base_model_path,
|
| 66 |
+
quantization_config=bnb_config,
|
| 67 |
+
trust_remote_code=True,
|
| 68 |
+
attn_implementation="eager",
|
| 69 |
+
torch_dtype=torch.float16
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
fine_tuned_model = PeftModel.from_pretrained(
|
| 73 |
+
base_model,
|
| 74 |
+
adapter_path,
|
| 75 |
+
device_map="auto"
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
return fine_tuned_model, tokenizer
|
| 79 |
+
|
| 80 |
+
#-----------------------------------------
|
| 81 |
+
# Inference Function
|
| 82 |
+
#-----------------------------------------
|
| 83 |
+
@torch.no_grad()
|
| 84 |
+
def generate_response(
|
| 85 |
+
model: AutoModelForCausalLM,
|
| 86 |
+
tokenizer: PreTrainedTokenizerFast,
|
| 87 |
+
messages: list,
|
| 88 |
+
do_sample: bool = False,
|
| 89 |
+
temperature: float = 0.7,
|
| 90 |
+
top_k: int = 50,
|
| 91 |
+
top_p: float = 0.95,
|
| 92 |
+
num_beams: int = 1,
|
| 93 |
+
max_new_tokens: int = 500
|
| 94 |
+
) -> str:
|
| 95 |
+
"""
|
| 96 |
+
Runs inference on an LLM model.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
model (AutoModelForCausalLM)
|
| 100 |
+
tokenizer (PreTrainedTokenizerFast)
|
| 101 |
+
messages (list): List of dicts containing 'role' and 'content'
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
str: Model response
|
| 105 |
+
"""
|
| 106 |
+
# Ensure pad token exists
|
| 107 |
+
tokenizer.pad_token = "<|reserved_special_token_5|>"
|
| 108 |
+
|
| 109 |
+
# Create chat prompt
|
| 110 |
+
input_text = tokenizer.apply_chat_template(
|
| 111 |
+
messages,
|
| 112 |
+
add_generation_prompt=True,
|
| 113 |
+
tokenize=False
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Tokenize input
|
| 117 |
+
inputs = tokenizer(
|
| 118 |
+
input_text,
|
| 119 |
+
max_length=500,
|
| 120 |
+
truncation=True,
|
| 121 |
+
return_tensors="pt"
|
| 122 |
+
).to(model.device)
|
| 123 |
+
|
| 124 |
+
generation_params = {
|
| 125 |
+
"do_sample": do_sample,
|
| 126 |
+
"temperature": temperature if do_sample else None,
|
| 127 |
+
"top_k": top_k if do_sample else None,
|
| 128 |
+
"top_p": top_p if do_sample else None,
|
| 129 |
+
"num_beams": num_beams if not do_sample else 1,
|
| 130 |
+
"max_new_tokens": max_new_tokens
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
output = model.generate(**inputs, **generation_params)
|
| 134 |
+
|
| 135 |
+
# Decode and clean up response
|
| 136 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 137 |
+
|
| 138 |
+
if 'assistant' in response:
|
| 139 |
+
response = response.split('assistant')[1].strip()
|
| 140 |
+
|
| 141 |
+
return response
|