Spaces:
Runtime error
Runtime error
File size: 5,448 Bytes
29969bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import logging
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
import torch
import tarfile
from huggingface_hub import HfApi
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Debug environment variables
logger.info("Environment variables: %s", {k: "****" if "TOKEN" in k or k == "granite" else v for k, v in os.environ.items()})
model_path = "ibm-granite/granite-3.3-8b-instruct"
dataset_path = "mycholpath/ascii-json"
output_dir = "/app/granite-8b-finetuned-ascii"
output_tarball = "/app/granite-8b-finetuned-ascii.tar.gz"
model_repo = "mycholpath/granite-8b-finetuned-ascii"
artifact_repo = "mycholpath/granite-finetuned-artifacts"
# Get HF token from granite environment variable
granite_var = os.getenv("granite")
if not granite_var or not granite_var.startswith("HF_TOKEN="):
logger.error("granite environment variable is not set or invalid. Expected format: HF_TOKEN=<token>.")
raise ValueError("granite environment variable is not set or invalid. Please set it in HF Space settings.")
hf_token = granite_var.replace("HF_TOKEN=", "")
logger.info("HF_TOKEN extracted from granite (value hidden for security)")
logging.info("Loading tokenizer...")
try:
tokenizer = AutoTokenizer.from_pretrained(
model_path, token=hf_token, cache_dir="/tmp/hf_cache", trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'right'
except Exception as e:
logger.error(f"Failed to load tokenizer: {str(e)}")
raise
logging.info("Loading model...")
try:
model = AutoModelForCausalLM.from_pretrained(
model_path,
token=hf_token,
torch_dtype=torch.float16,
device_map="auto",
cache_dir="/tmp/hf_cache",
trust_remote_code=True
)
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
logging.info("Preparing to load private dataset...")
logger.info("Using HF_TOKEN from granite for private dataset authentication")
try:
dataset = load_dataset(dataset_path, split="train", token=hf_token)
logger.info(f"Dataset loaded successfully: {len(dataset)} examples")
except Exception as e:
logger.error(f"Failed to load dataset: {str(e)}")
raise
def formatting_prompts_func(example):
formatted = f"{example['prompt']}\n{example['completion']}"
return [formatted]
# Use SFTConfig for training arguments
sft_config = SFTConfig(
output_dir=output_dir,
num_train_epochs=5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
weight_decay=0.01,
eval_strategy="no",
save_steps=50,
logging_steps=10,
fp16=True,
max_grad_norm=0.3,
warmup_ratio=0.03,
lr_scheduler_type="cosine",
max_seq_length=768,
dataset_text_field=None,
packing=False
)
logging.info("Starting training...")
try:
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
eval_dataset=None,
formatting_func=formatting_prompts_func,
args=sft_config
)
except Exception as e:
logger.error(f"Failed to initialize SFTTrainer: {str(e)}")
raise
trainer.train()
logging.info("Saving fine-tuned model...")
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
# Create tarball for local retrieval
try:
with tarfile.open(output_tarball, "w:gz") as tar:
tar.add(output_dir, arcname=os.path.basename(output_dir))
logger.info(f"Model tarball created: {output_tarball}")
except Exception as e:
logger.error(f"Failed to create model tarball: {str(e)}")
raise
# Upload model to HF Hub
try:
api = HfApi()
logger.info(f"Creating model repository: {model_repo}")
api.create_repo(
repo_id=model_repo,
repo_type="model",
token=hf_token,
private=True,
exist_ok=True
)
logger.info(f"Uploading model to {model_repo}")
api.upload_folder(
folder_path=output_dir,
repo_id=model_repo,
repo_type="model",
token=hf_token,
create_pr=False
)
logger.info(f"Fine-tuned model uploaded to {model_repo}")
except Exception as e:
logger.error(f"Failed to upload model to HF Hub: {str(e)}")
logger.warning("Continuing to tarball upload despite model upload failure")
# Upload tarball to HF Hub dataset repository
try:
api = HfApi()
logger.info(f"Creating dataset repository: {artifact_repo}")
api.create_repo(
repo_id=artifact_repo,
repo_type="dataset",
token=hf_token,
private=True,
exist_ok=True
)
logger.info(f"Uploading tarball to {artifact_repo}")
api.upload_file(
path_or_fileobj=output_tarball,
path_in_repo="granite-8b-finetuned-ascii.tar.gz",
repo_id=artifact_repo,
repo_type="dataset"
token=hf_token
)
logger.info(f"Tarball uploaded to {artifact_repo}/granite-8b-finetuned-ascii.tar.gz")
except Exception as e:
logger.error(f"Failed to upload tarball to HF Hub: {str(e)}")
raise |