File size: 5,448 Bytes
29969bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import logging
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
import torch
import tarfile
from huggingface_hub import HfApi

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Debug environment variables
logger.info("Environment variables: %s", {k: "****" if "TOKEN" in k or k == "granite" else v for k, v in os.environ.items()})

model_path = "ibm-granite/granite-3.3-8b-instruct"
dataset_path = "mycholpath/ascii-json"
output_dir = "/app/granite-8b-finetuned-ascii"
output_tarball = "/app/granite-8b-finetuned-ascii.tar.gz"
model_repo = "mycholpath/granite-8b-finetuned-ascii"
artifact_repo = "mycholpath/granite-finetuned-artifacts"

# Get HF token from granite environment variable
granite_var = os.getenv("granite")
if not granite_var or not granite_var.startswith("HF_TOKEN="):
    logger.error("granite environment variable is not set or invalid. Expected format: HF_TOKEN=<token>.")
    raise ValueError("granite environment variable is not set or invalid. Please set it in HF Space settings.")
hf_token = granite_var.replace("HF_TOKEN=", "")
logger.info("HF_TOKEN extracted from granite (value hidden for security)")

logging.info("Loading tokenizer...")
try:
    tokenizer = AutoTokenizer.from_pretrained(
        model_path, token=hf_token, cache_dir="/tmp/hf_cache", trust_remote_code=True
    )
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = 'right'
except Exception as e:
    logger.error(f"Failed to load tokenizer: {str(e)}")
    raise

logging.info("Loading model...")
try:
    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        token=hf_token,
        torch_dtype=torch.float16,
        device_map="auto",
        cache_dir="/tmp/hf_cache",
        trust_remote_code=True
    )
except Exception as e:
    logger.error(f"Failed to load model: {str(e)}")
    raise

lora_config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)

logging.info("Preparing to load private dataset...")
logger.info("Using HF_TOKEN from granite for private dataset authentication")
try:
    dataset = load_dataset(dataset_path, split="train", token=hf_token)
    logger.info(f"Dataset loaded successfully: {len(dataset)} examples")
except Exception as e:
    logger.error(f"Failed to load dataset: {str(e)}")
    raise

def formatting_prompts_func(example):
    formatted = f"{example['prompt']}\n{example['completion']}"
    return [formatted]

# Use SFTConfig for training arguments
sft_config = SFTConfig(
    output_dir=output_dir,
    num_train_epochs=5,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    gradient_accumulation_steps=4,
    learning_rate=2e-4,
    weight_decay=0.01,
    eval_strategy="no",
    save_steps=50,
    logging_steps=10,
    fp16=True,
    max_grad_norm=0.3,
    warmup_ratio=0.03,
    lr_scheduler_type="cosine",
    max_seq_length=768,
    dataset_text_field=None,
    packing=False
)

logging.info("Starting training...")
try:
    trainer = SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        train_dataset=dataset,
        eval_dataset=None,
        formatting_func=formatting_prompts_func,
        args=sft_config
    )
except Exception as e:
    logger.error(f"Failed to initialize SFTTrainer: {str(e)}")
    raise

trainer.train()

logging.info("Saving fine-tuned model...")
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)

# Create tarball for local retrieval
try:
    with tarfile.open(output_tarball, "w:gz") as tar:
        tar.add(output_dir, arcname=os.path.basename(output_dir))
    logger.info(f"Model tarball created: {output_tarball}")
except Exception as e:
    logger.error(f"Failed to create model tarball: {str(e)}")
    raise

# Upload model to HF Hub
try:
    api = HfApi()
    logger.info(f"Creating model repository: {model_repo}")
    api.create_repo(
        repo_id=model_repo,
        repo_type="model",
        token=hf_token,
        private=True,
        exist_ok=True
    )
    logger.info(f"Uploading model to {model_repo}")
    api.upload_folder(
        folder_path=output_dir,
        repo_id=model_repo,
        repo_type="model",
        token=hf_token,
        create_pr=False
    )
    logger.info(f"Fine-tuned model uploaded to {model_repo}")
except Exception as e:
    logger.error(f"Failed to upload model to HF Hub: {str(e)}")
    logger.warning("Continuing to tarball upload despite model upload failure")

# Upload tarball to HF Hub dataset repository
try:
    api = HfApi()
    logger.info(f"Creating dataset repository: {artifact_repo}")
    api.create_repo(
        repo_id=artifact_repo,
        repo_type="dataset",
        token=hf_token,
        private=True,
        exist_ok=True
    )
    logger.info(f"Uploading tarball to {artifact_repo}")
    api.upload_file(
        path_or_fileobj=output_tarball,
        path_in_repo="granite-8b-finetuned-ascii.tar.gz",
        repo_id=artifact_repo,
        repo_type="dataset"
        token=hf_token
    )
    logger.info(f"Tarball uploaded to {artifact_repo}/granite-8b-finetuned-ascii.tar.gz")
except Exception as e:
    logger.error(f"Failed to upload tarball to HF Hub: {str(e)}")
    raise