Own-Knowledge-GPT / bot /web_scrapping /searchable_index.py
myn0908's picture
own knowledge gpt
d97a6fa
raw
history blame
5.67 kB
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import (
PyPDFLoader,
DataFrameLoader,
)
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chat_models import ChatOpenAI
from bot.utils.show_log import logger
import pandas as pd
import threading
import glob
import os
import queue
class SearchableIndex:
def __init__(self, path):
self.path = path
def get_text_splits(self):
with open(self.path, 'r') as txt:
data = txt.read()
text_split = RecursiveCharacterTextSplitter(chunk_size=1000,
chunk_overlap=0,
length_function=len)
doc_list = text_split.split_text(data)
return doc_list
def get_pdf_splits(self):
loader = PyPDFLoader(self.path)
pages = loader.load_and_split()
text_split = RecursiveCharacterTextSplitter(chunk_size=1000,
chunk_overlap=0,
length_function=len)
doc_list = []
for pg in pages:
pg_splits = text_split.split_text(pg.page_content)
doc_list.extend(pg_splits)
return doc_list
def get_xml_splits(self, target_col, sheet_name):
df = pd.read_excel(io=self.path,
engine='openpyxl',
sheet_name=sheet_name)
df_loader = DataFrameLoader(df,
page_content_column=target_col)
excel_docs = df_loader.load()
return excel_docs
def get_csv_splits(self):
csv_loader = CSVLoader(self.path)
csv_docs = csv_loader.load()
return csv_docs
@classmethod
def merge_or_create_index(cls, index_store, faiss_db, embeddings, logger):
if os.path.exists(index_store):
local_db = FAISS.load_local(index_store, embeddings)
local_db.merge_from(faiss_db)
logger.info("Merge index completed")
local_db.save_local(index_store)
return local_db
else:
faiss_db.save_local(folder_path=index_store)
logger.info("New store created and loaded...")
local_db = FAISS.load_local(index_store, embeddings)
return local_db
@classmethod
def check_and_load_index(cls, index_files, embeddings, logger, path, result_queue):
if index_files:
local_db = FAISS.load_local(index_files[0], embeddings)
file_to_remove = os.path.join(path, 'combined_content.txt')
if os.path.exists(file_to_remove):
os.remove(file_to_remove)
else:
raise logger.warning("Index store does not exist")
result_queue.put(local_db) # Put the result in the queue
@classmethod
def embed_index(cls, url, path, target_col=None, sheet_name=None):
embeddings = OpenAIEmbeddings()
def process_docs(queues, extension):
nonlocal doc_list
instance = cls(path)
if extension == ".txt":
doc_list = instance.get_text_splits()
elif extension == ".pdf":
doc_list = instance.get_pdf_splits()
elif extension == ".xml":
doc_list = instance.get_xml_splits(target_col, sheet_name)
elif extension == ".csv":
doc_list = instance.get_csv_splits()
else:
doc_list = None
queues.put(doc_list)
if url != 'NO_URL' and path:
file_extension = os.path.splitext(path)[1].lower()
data_queue = queue.Queue()
thread = threading.Thread(target=process_docs, args=(data_queue, file_extension))
thread.start()
doc_list = data_queue.get()
if not doc_list:
raise ValueError("Unsupported file format")
faiss_db = FAISS.from_texts(doc_list, embeddings)
index_store = os.path.splitext(path)[0] + "_index"
local_db = cls.merge_or_create_index(index_store, faiss_db, embeddings, logger)
return local_db, index_store
elif url == 'NO_URL' and path:
index_files = glob.glob(os.path.join(path, '*_index'))
result_queue = queue.Queue() # Create a queue to store the result
thread = threading.Thread(target=cls.check_and_load_index,
args=(index_files, embeddings, logger, path, result_queue))
thread.start()
local_db = result_queue.get() # Retrieve the result from the queue
return local_db
@classmethod
def query(cls, question: str, llm, index):
"""Query the vectorstore."""
llm = llm or ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0)
chain = RetrievalQA.from_chain_type(
llm, retriever=index.as_retriever()
)
return chain.run(question)
if __name__ == '__main__':
pass
# Examples for search query
# index = SearchableIndex.embed_index(
# path="/Users/macbook/Downloads/AI_test_exam/ChatBot/learning_documents/combined_content.txt")
# prompt = 'show more detail about types of data collected'
# llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0)
# result = SearchableIndex.query(prompt, llm=llm, index=index)
# print(result)