File size: 4,811 Bytes
04f0bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import pandas as pd
import hashlib
import requests
from typing import List
from datetime import datetime
from langchain.schema.embeddings import Embeddings
from streamlit.runtime.uploaded_file_manager import UploadedFile
from clickhouse_connect import get_client
from multiprocessing.pool import ThreadPool
from langchain.vectorstores.myscale import MyScaleWithoutJSON, MyScaleSettings

parser_url = "https://api.unstructured.io/general/v0/general"


def parse_files(api_key, user_id, files: List[UploadedFile], collection="default"):
    def parse_file(file: UploadedFile):
        headers = {
            "accept": "application/json",
            "unstructured-api-key": api_key,
        }
        data = {"strategy": "auto", "ocr_languages": ["eng"]}
        file_hash = hashlib.sha256(file.read()).hexdigest()
        file_data = {"files": (file.name, file.getvalue(), file.type)}
        response = requests.post(
            parser_url, headers=headers, data=data, files=file_data
        )
        json_response = response.json()
        if response.status_code != 200:
            raise ValueError(str(json_response))
        texts = [
            {
                "text": t["text"],
                "file_name": t["metadata"]["filename"],
                "entity_id": hashlib.sha256((file_hash + t["text"]).encode()).hexdigest(),
                "user_id": user_id,
                "collection_id": collection,
                "created_by": datetime.now(),
            }
            for t in json_response
            if t["type"] == "NarrativeText" and len(t["text"].split(" ")) > 10
        ]
        return texts

    with ThreadPool(8) as p:
        rows = []
        for r in map(parse_file, files):
            rows.extend(r)
        return rows


def extract_embedding(embeddings: Embeddings, texts):
    if len(texts) > 0:
        embs = embeddings.embed_documents([t["text"] for _, t in enumerate(texts)])
        for i, _ in enumerate(texts):
            texts[i]["vector"] = embs[i]
        return texts
    raise ValueError("No texts extracted!")


class PrivateKnowledgeBase:
    def __init__(
        self,
        host,
        port,
        username,
        password,
        embedding: Embeddings,
        parser_api_key,
        db="chat",
        kb_table="private_kb",
    ) -> None:
        super().__init__()
        schema_ = f"""
            CREATE TABLE IF NOT EXISTS {db}.{kb_table}(
                entity_id String,
                file_name String,
                text String,
                user_id String,
                collection_id String,
                created_by DateTime,
                vector Array(Float32),
                CONSTRAINT cons_vec_len CHECK length(vector) = 768,
                VECTOR INDEX vidx vector TYPE MSTG('metric_type=Cosine')
            ) ENGINE = ReplacingMergeTree ORDER BY entity_id
        """
        config = MyScaleSettings(
            host=host,
            port=port,
            username=username,
            password=password,
            database=db,
            table=kb_table,
        )
        client = get_client(
            host=config.host,
            port=config.port,
            username=config.username,
            password=config.password,
        )
        client.command("SET allow_experimental_object_type=1")
        client.command(schema_)
        self.parser_api_key = parser_api_key
        self.vstore = MyScaleWithoutJSON(
            embedding=embedding,
            config=config,
            must_have_cols=["file_name", "text", "create_by"],
        )
        self.retriever = self.vstore.as_retriever()

    def list_files(self, user_id):
        query = f"""
        SELECT DISTINCT file_name FROM {self.vstore.config.database}.{self.vstore.config.table}
        WHERE user_id = '{user_id}'
        """
        return [r for r in self.vstore.client.query(query).named_results()]

    def add_by_file(
        self, user_id, files: List[UploadedFile], collection="default", **kwargs
    ):
        data = parse_files(self.parser_api_key, user_id, files, collection=collection)
        data = extract_embedding(self.vstore.embeddings, data)
        self.vstore.client.insert_df(
            self.vstore.config.table,
            pd.DataFrame(data),
            database=self.vstore.config.database,
        )

    def clear(self, user_id):
        self.vstore.client.command(
            f"DELETE FROM {self.vstore.config.database}.{self.vstore.config.table} "
            f"WHERE user_id='{user_id}'"
        )

    def _get_relevant_documents(self, query, *args, **kwargs):
        return self.retriever._get_relevant_documents(query, *args, **kwargs)

    async def _aget_relevant_documents(self, *args, **kwargs):
        return self.retriever._aget_relevant_documents(*args, **kwargs)