File size: 17,384 Bytes
ea4e188
 
 
 
 
 
 
 
 
89b21d3
 
ea4e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41033b0
ea4e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b21d3
ea4e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8cc910
ea4e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8cc910
ea4e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8cc910
ea4e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c38e9
ea4e188
 
 
 
 
 
 
 
89b21d3
ea4e188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b21d3
ea4e188
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
from flask import Flask, request, jsonify, send_file
import os
import base64
import json
import uuid
import tempfile
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional
import cv2
import numpy as np
from PIL import Image
import torch
from transformers import pipeline
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip
import requests
from io import BytesIO
import threading
import time

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = Flask(__name__)

class HuggingFaceVideoGenerator:
    def __init__(self, huggingface_token: Optional[str] = None):
        """
        Initialize the Hugging Face Video Generator
        
        Args:
            huggingface_token: Optional Hugging Face API token
        """
        self.hf_token = huggingface_token
        self.jobs = {}  # Store processing jobs
        
        if huggingface_token:
            os.environ["HUGGINGFACE_HUB_TOKEN"] = huggingface_token
        
        # Initialize Hugging Face pipelines
        self._init_pipelines()
        
        # Create output directory
        self.output_dir = Path("generated_videos")
        self.output_dir.mkdir(exist_ok=True)

    def _init_pipelines(self):
        """Initialize Hugging Face pipelines"""
        try:
            # Text-to-Speech pipeline
            self.tts_pipeline = pipeline(
                "text-to-speech",
                model="microsoft/speecht5_tts",
                device=0 if torch.cuda.is_available() else -1
            )
            logger.info("TTS pipeline initialized")
        except Exception as e:
            logger.warning(f"Could not initialize TTS pipeline: {e}")
            self.tts_pipeline = None

        try:
            # Text-to-Image pipeline (for generating images from text)
            self.text_to_image = pipeline(
                "text-to-image",
                model="runwayml/stable-diffusion-v1-5",
                device=0 if torch.cuda.is_available() else -1
            )
            logger.info("Text-to-Image pipeline initialized")
        except Exception as e:
            logger.warning(f"Could not initialize Text-to-Image pipeline: {e}")
            self.text_to_image = None

    def download_image_from_url(self, url: str) -> np.ndarray:
        """Download and process image from URL"""
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            
            image = Image.open(BytesIO(response.content))
            # Convert to RGB if needed
            if image.mode != 'RGB':
                image = image.convert('RGB')
            
            # Convert to OpenCV format
            opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
            return opencv_image
            
        except Exception as e:
            logger.error(f"Error downloading image from {url}: {e}")
            raise

    def decode_base64_image(self, base64_string: str) -> np.ndarray:
        """Decode base64 image string"""
        try:
            # Remove data URL prefix if present
            if ',' in base64_string:
                base64_string = base64_string.split(',')[1]
            
            image_data = base64.b64decode(base64_string)
            image = Image.open(BytesIO(image_data))
            
            # Convert to RGB if needed
            if image.mode != 'RGB':
                image = image.convert('RGB')
            
            # Convert to OpenCV format
            opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
            return opencv_image
            
        except Exception as e:
            logger.error(f"Error decoding base64 image: {e}")
            raise

    def generate_image_from_text(self, prompt: str) -> np.ndarray:
        """Generate image from text prompt using Hugging Face"""
        if not self.text_to_image:
            raise ValueError("Text-to-Image pipeline not available")
        
        try:
            logger.info(f"Generating image from prompt: {prompt}")
            result = self.text_to_image(prompt)
            
            # Convert PIL image to OpenCV format
            if hasattr(result, 'images'):
                pil_image = result.images[0]
            else:
                pil_image = result
            
            opencv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
            return opencv_image
            
        except Exception as e:
            logger.error(f"Error generating image from text: {e}")
            raise

    def process_images_data(self, images_data: List[Dict]) -> List[np.ndarray]:
        """Process various image data formats"""
        processed_images = []
        
        for img_data in images_data:
            try:
                if 'url' in img_data:
                    # Download from URL
                    image = self.download_image_from_url(img_data['url'])
                    processed_images.append(image)
                    
                elif 'base64' in img_data:
                    # Decode base64
                    image = self.decode_base64_image(img_data['base64'])
                    processed_images.append(image)
                    
                elif 'text_prompt' in img_data and self.text_to_image:
                    # Generate from text
                    image = self.generate_image_from_text(img_data['text_prompt'])
                    processed_images.append(image)
                    
                else:
                    logger.warning(f"Unsupported image data format: {img_data.keys()}")
                    
            except Exception as e:
                logger.error(f"Error processing image data: {e}")
                continue
        
        return processed_images

    def create_video_from_images(
        self,
        images: List[np.ndarray],
        output_path: str,
        fps: int = 30,
        duration_per_image: float = 2.0,
        transition_duration: float = 0.5,
        resolution: tuple = (1920, 1080),
        transition_type: str = "fade"
    ) -> str:
        """Create video from processed images"""
        logger.info(f"Creating video from {len(images)} images")
        
        if not images:
            raise ValueError("No images provided")
        
        # Create clips from images
        clips = []
        
        for i, img in enumerate(images):
            # Resize image
            img_resized = cv2.resize(img, resolution)
            
            # Convert BGR to RGB for moviepy
            img_rgb = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB)
            
            # Create temporary file for image
            with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f:
                Image.fromarray(img_rgb).save(f.name)
                temp_img_path = f.name
            
            # Create image clip
            clip = ImageClip(temp_img_path, duration=duration_per_image)
            
            # Add transition effect
            if transition_type == "fade" and i > 0:
                clip = clip.fadein(transition_duration)
                if i < len(images) - 1:
                    clip = clip.fadeout(transition_duration)
            
            clips.append(clip)
            
            # Clean up temp file
            try:
                os.unlink(temp_img_path)
            except:
                pass
        
        # Concatenate clips
        if transition_type == "fade" and len(clips) > 1:
            # Overlap clips for smooth transitions
            final_clips = [clips[0]]
            for clip in clips[1:]:
                final_clips.append(clip.set_start(final_clips[-1].end - transition_duration))
            final_video = CompositeVideoClip(final_clips)
        else:
            final_video = concatenate_videoclips(clips)
        
        # Write video
        final_video.write_videofile(
            output_path,
            fps=fps,
            codec='libx264',
            audio_codec='aac' if hasattr(final_video, 'audio') and final_video.audio else None
        )
        
        # Clean up
        final_video.close()
        for clip in clips:
            clip.close()
        
        logger.info(f"Video created: {output_path}")
        return output_path

    def generate_tts_audio(self, text: str) -> str:
        """Generate TTS audio"""
        if not self.tts_pipeline:
            raise ValueError("TTS pipeline not available")
        
        logger.info("Generating TTS audio")
        
        try:
            # Generate audio
            audio_data = self.tts_pipeline(text)
            
            # Save to temporary file
            import soundfile as sf
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
                sf.write(f.name, audio_data["audio"], audio_data["sampling_rate"])
                return f.name
                
        except Exception as e:
            logger.error(f"Error generating TTS: {e}")
            raise

    def add_audio_to_video(
        self,
        video_path: str,
        audio_path: str,
        output_path: str,
        audio_volume: float = 1.0
    ) -> str:
        """Add audio to video"""
        logger.info("Adding audio to video")
        
        try:
            video = VideoFileClip(video_path)
            audio = AudioFileClip(audio_path)
            
            # Adjust volume
            if audio_volume != 1.0:
                audio = audio.volumex(audio_volume)
            
            # Match durations
            if audio.duration > video.duration:
                audio = audio.subclip(0, video.duration)
            elif audio.duration < video.duration:
                loops = int(video.duration / audio.duration) + 1
                audio = audio.loop(loops).subclip(0, video.duration)
            
            # Combine
            final_video = video.set_audio(audio)
            final_video.write_videofile(output_path, codec='libx264', audio_codec='aac')
            
            # Clean up
            video.close()
            audio.close()
            final_video.close()
            
            return output_path
            
        except Exception as e:
            logger.error(f"Error adding audio to video: {e}")
            raise

    def process_video_request(self, job_id: str, request_data: Dict[str, Any]):
        """Process video generation request in background"""
        try:
            self.jobs[job_id]['status'] = 'processing'
            self.jobs[job_id]['progress'] = 0
            
            # Extract parameters
            images_data = request_data.get('images', [])
            video_params = request_data.get('video_params', {})
            audio_params = request_data.get('audio_params', {})
            
            # Process images
            self.jobs[job_id]['progress'] = 20
            images = self.process_images_data(images_data)
            
            if not images:
                raise ValueError("No valid images processed")
            
            # Create video
            self.jobs[job_id]['progress'] = 50
            video_output = self.output_dir / f"{job_id}_video.mp4"
            
            self.create_video_from_images(
                images=images,
                output_path=str(video_output),
                fps=video_params.get('fps', 30),
                duration_per_image=video_params.get('duration_per_image', 2.0),
                transition_duration=video_params.get('transition_duration', 0.5),
                resolution=tuple(video_params.get('resolution', [1920, 1080])),
                transition_type=video_params.get('transition_type', 'fade')
            )
            
            # Add audio if requested
            final_output = video_output
            if audio_params.get('text') and self.tts_pipeline:
                self.jobs[job_id]['progress'] = 80
                
                audio_path = self.generate_tts_audio(audio_params['text'])
                final_output = self.output_dir / f"{job_id}_final.mp4"
                
                self.add_audio_to_video(
                    video_path=str(video_output),
                    audio_path=audio_path,
                    output_path=str(final_output),
                    audio_volume=audio_params.get('volume', 1.0)
                )
                
                # Clean up
                try:
                    os.unlink(audio_path)
                    os.unlink(str(video_output))
                except:
                    pass
            
            # Update job status
            self.jobs[job_id]['status'] = 'completed'
            self.jobs[job_id]['progress'] = 100
            self.jobs[job_id]['output_file'] = str(final_output)
            self.jobs[job_id]['download_url'] = f"/download/{job_id}"
            
            logger.info(f"Job {job_id} completed successfully")
            
        except Exception as e:
            logger.error(f"Job {job_id} failed: {e}")
            self.jobs[job_id]['status'] = 'failed'
            self.jobs[job_id]['error'] = str(e)

# Initialize generator
generator = HuggingFaceVideoGenerator(
    huggingface_token=os.getenv('HUGGINGFACE_TOKEN')
)

@app.route('/generate_video', methods=['POST'])
def generate_video():
    """Main endpoint to receive data from n8n and generate video"""
    try:
        data = request.get_json()
        
        if not data:
            return jsonify({'error': 'No JSON data provided'}), 400
        
        # Validate required fields
        if 'images' not in data or not data['images']:
            return jsonify({'error': 'No images data provided'}), 400
        
        # Generate unique job ID
        job_id = str(uuid.uuid4())
        
        # Initialize job
        generator.jobs[job_id] = {
            'status': 'queued',
            'progress': 0,
            'created_at': time.time()
        }
        
        # Start processing in background
        thread = threading.Thread(
            target=generator.process_video_request,
            args=(job_id, data)
        )
        thread.daemon = True
        thread.start()
        
        return jsonify({
            'job_id': job_id,
            'status': 'queued',
            'status_url': f"/status/{job_id}",
            'message': 'Video generation started'
        })
        
    except Exception as e:
        logger.error(f"Error in generate_video: {e}")
        return jsonify({'error': str(e)}), 500

@app.route('/status/<job_id>', methods=['GET'])
def get_job_status(job_id):
    """Get job status and progress"""
    if job_id not in generator.jobs:
        return jsonify({'error': 'Job not found'}), 404
    
    job = generator.jobs[job_id]
    response = {
        'job_id': job_id,
        'status': job['status'],
        'progress': job['progress']
    }
    
    if job['status'] == 'completed':
        response['download_url'] = job.get('download_url')
    elif job['status'] == 'failed':
        response['error'] = job.get('error')
    
    return jsonify(response)

@app.route('/download/<job_id>', methods=['GET'])
def download_video(job_id):
    """Download generated video"""
    if job_id not in generator.jobs:
        return jsonify({'error': 'Job not found'}), 404
    
    job = generator.jobs[job_id]
    
    if job['status'] != 'completed':
        return jsonify({'error': 'Job not completed'}), 400
    
    output_file = job.get('output_file')
    if not output_file or not os.path.exists(output_file):
        return jsonify({'error': 'Output file not found'}), 404
    
    return send_file(
        output_file,
        as_attachment=True,
        download_name=f"generated_video_{job_id}.mp4"
    )

@app.route('/health', methods=['GET'])
def health_check():
    """Health check endpoint"""
    return jsonify({
        'status': 'healthy',
        'tts_available': generator.tts_pipeline is not None,
        'text_to_image_available': generator.text_to_image is not None
    })

@app.route('/', methods=['GET'])
def index():
    """API documentation"""
    return jsonify({
        'message': 'Hugging Face Video Generator API',
        'endpoints': {
            'POST /generate_video': 'Generate video from images and audio',
            'GET /status/<job_id>': 'Get job status',
            'GET /download/<job_id>': 'Download generated video',
            'GET /health': 'Health check'
        },
        'example_request': {
            'images': [
                {'url': 'https://example.com/image1.jpg'},
                {'base64': '...'},
                {'text_prompt': 'A beautiful sunset over mountains'}
            ],
            'video_params': {
                'fps': 30,
                'duration_per_image': 3.0,
                'transition_duration': 0.5,
                'resolution': [1920, 1080],
                'transition_type': 'fade'
            },
            'audio_params': {
                'text': 'Welcome to our video presentation',
                'volume': 1.0
            }
        }
    })

if __name__ == '__main__':
    # Run the Flask server
    app.run(
        host='0.0.0.0',
        port=int(os.getenv('PORT', 5000)),
        debug=os.getenv('DEBUG', 'false').lower() == 'true'
    )