Spaces:
Runtime error
Runtime error
File size: 17,384 Bytes
ea4e188 89b21d3 ea4e188 41033b0 ea4e188 89b21d3 ea4e188 e8cc910 ea4e188 e8cc910 ea4e188 e8cc910 ea4e188 d0c38e9 ea4e188 89b21d3 ea4e188 89b21d3 ea4e188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
from flask import Flask, request, jsonify, send_file
import os
import base64
import json
import uuid
import tempfile
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional
import cv2
import numpy as np
from PIL import Image
import torch
from transformers import pipeline
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip
import requests
from io import BytesIO
import threading
import time
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
class HuggingFaceVideoGenerator:
def __init__(self, huggingface_token: Optional[str] = None):
"""
Initialize the Hugging Face Video Generator
Args:
huggingface_token: Optional Hugging Face API token
"""
self.hf_token = huggingface_token
self.jobs = {} # Store processing jobs
if huggingface_token:
os.environ["HUGGINGFACE_HUB_TOKEN"] = huggingface_token
# Initialize Hugging Face pipelines
self._init_pipelines()
# Create output directory
self.output_dir = Path("generated_videos")
self.output_dir.mkdir(exist_ok=True)
def _init_pipelines(self):
"""Initialize Hugging Face pipelines"""
try:
# Text-to-Speech pipeline
self.tts_pipeline = pipeline(
"text-to-speech",
model="microsoft/speecht5_tts",
device=0 if torch.cuda.is_available() else -1
)
logger.info("TTS pipeline initialized")
except Exception as e:
logger.warning(f"Could not initialize TTS pipeline: {e}")
self.tts_pipeline = None
try:
# Text-to-Image pipeline (for generating images from text)
self.text_to_image = pipeline(
"text-to-image",
model="runwayml/stable-diffusion-v1-5",
device=0 if torch.cuda.is_available() else -1
)
logger.info("Text-to-Image pipeline initialized")
except Exception as e:
logger.warning(f"Could not initialize Text-to-Image pipeline: {e}")
self.text_to_image = None
def download_image_from_url(self, url: str) -> np.ndarray:
"""Download and process image from URL"""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to OpenCV format
opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
return opencv_image
except Exception as e:
logger.error(f"Error downloading image from {url}: {e}")
raise
def decode_base64_image(self, base64_string: str) -> np.ndarray:
"""Decode base64 image string"""
try:
# Remove data URL prefix if present
if ',' in base64_string:
base64_string = base64_string.split(',')[1]
image_data = base64.b64decode(base64_string)
image = Image.open(BytesIO(image_data))
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to OpenCV format
opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
return opencv_image
except Exception as e:
logger.error(f"Error decoding base64 image: {e}")
raise
def generate_image_from_text(self, prompt: str) -> np.ndarray:
"""Generate image from text prompt using Hugging Face"""
if not self.text_to_image:
raise ValueError("Text-to-Image pipeline not available")
try:
logger.info(f"Generating image from prompt: {prompt}")
result = self.text_to_image(prompt)
# Convert PIL image to OpenCV format
if hasattr(result, 'images'):
pil_image = result.images[0]
else:
pil_image = result
opencv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return opencv_image
except Exception as e:
logger.error(f"Error generating image from text: {e}")
raise
def process_images_data(self, images_data: List[Dict]) -> List[np.ndarray]:
"""Process various image data formats"""
processed_images = []
for img_data in images_data:
try:
if 'url' in img_data:
# Download from URL
image = self.download_image_from_url(img_data['url'])
processed_images.append(image)
elif 'base64' in img_data:
# Decode base64
image = self.decode_base64_image(img_data['base64'])
processed_images.append(image)
elif 'text_prompt' in img_data and self.text_to_image:
# Generate from text
image = self.generate_image_from_text(img_data['text_prompt'])
processed_images.append(image)
else:
logger.warning(f"Unsupported image data format: {img_data.keys()}")
except Exception as e:
logger.error(f"Error processing image data: {e}")
continue
return processed_images
def create_video_from_images(
self,
images: List[np.ndarray],
output_path: str,
fps: int = 30,
duration_per_image: float = 2.0,
transition_duration: float = 0.5,
resolution: tuple = (1920, 1080),
transition_type: str = "fade"
) -> str:
"""Create video from processed images"""
logger.info(f"Creating video from {len(images)} images")
if not images:
raise ValueError("No images provided")
# Create clips from images
clips = []
for i, img in enumerate(images):
# Resize image
img_resized = cv2.resize(img, resolution)
# Convert BGR to RGB for moviepy
img_rgb = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB)
# Create temporary file for image
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f:
Image.fromarray(img_rgb).save(f.name)
temp_img_path = f.name
# Create image clip
clip = ImageClip(temp_img_path, duration=duration_per_image)
# Add transition effect
if transition_type == "fade" and i > 0:
clip = clip.fadein(transition_duration)
if i < len(images) - 1:
clip = clip.fadeout(transition_duration)
clips.append(clip)
# Clean up temp file
try:
os.unlink(temp_img_path)
except:
pass
# Concatenate clips
if transition_type == "fade" and len(clips) > 1:
# Overlap clips for smooth transitions
final_clips = [clips[0]]
for clip in clips[1:]:
final_clips.append(clip.set_start(final_clips[-1].end - transition_duration))
final_video = CompositeVideoClip(final_clips)
else:
final_video = concatenate_videoclips(clips)
# Write video
final_video.write_videofile(
output_path,
fps=fps,
codec='libx264',
audio_codec='aac' if hasattr(final_video, 'audio') and final_video.audio else None
)
# Clean up
final_video.close()
for clip in clips:
clip.close()
logger.info(f"Video created: {output_path}")
return output_path
def generate_tts_audio(self, text: str) -> str:
"""Generate TTS audio"""
if not self.tts_pipeline:
raise ValueError("TTS pipeline not available")
logger.info("Generating TTS audio")
try:
# Generate audio
audio_data = self.tts_pipeline(text)
# Save to temporary file
import soundfile as sf
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, audio_data["audio"], audio_data["sampling_rate"])
return f.name
except Exception as e:
logger.error(f"Error generating TTS: {e}")
raise
def add_audio_to_video(
self,
video_path: str,
audio_path: str,
output_path: str,
audio_volume: float = 1.0
) -> str:
"""Add audio to video"""
logger.info("Adding audio to video")
try:
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
# Adjust volume
if audio_volume != 1.0:
audio = audio.volumex(audio_volume)
# Match durations
if audio.duration > video.duration:
audio = audio.subclip(0, video.duration)
elif audio.duration < video.duration:
loops = int(video.duration / audio.duration) + 1
audio = audio.loop(loops).subclip(0, video.duration)
# Combine
final_video = video.set_audio(audio)
final_video.write_videofile(output_path, codec='libx264', audio_codec='aac')
# Clean up
video.close()
audio.close()
final_video.close()
return output_path
except Exception as e:
logger.error(f"Error adding audio to video: {e}")
raise
def process_video_request(self, job_id: str, request_data: Dict[str, Any]):
"""Process video generation request in background"""
try:
self.jobs[job_id]['status'] = 'processing'
self.jobs[job_id]['progress'] = 0
# Extract parameters
images_data = request_data.get('images', [])
video_params = request_data.get('video_params', {})
audio_params = request_data.get('audio_params', {})
# Process images
self.jobs[job_id]['progress'] = 20
images = self.process_images_data(images_data)
if not images:
raise ValueError("No valid images processed")
# Create video
self.jobs[job_id]['progress'] = 50
video_output = self.output_dir / f"{job_id}_video.mp4"
self.create_video_from_images(
images=images,
output_path=str(video_output),
fps=video_params.get('fps', 30),
duration_per_image=video_params.get('duration_per_image', 2.0),
transition_duration=video_params.get('transition_duration', 0.5),
resolution=tuple(video_params.get('resolution', [1920, 1080])),
transition_type=video_params.get('transition_type', 'fade')
)
# Add audio if requested
final_output = video_output
if audio_params.get('text') and self.tts_pipeline:
self.jobs[job_id]['progress'] = 80
audio_path = self.generate_tts_audio(audio_params['text'])
final_output = self.output_dir / f"{job_id}_final.mp4"
self.add_audio_to_video(
video_path=str(video_output),
audio_path=audio_path,
output_path=str(final_output),
audio_volume=audio_params.get('volume', 1.0)
)
# Clean up
try:
os.unlink(audio_path)
os.unlink(str(video_output))
except:
pass
# Update job status
self.jobs[job_id]['status'] = 'completed'
self.jobs[job_id]['progress'] = 100
self.jobs[job_id]['output_file'] = str(final_output)
self.jobs[job_id]['download_url'] = f"/download/{job_id}"
logger.info(f"Job {job_id} completed successfully")
except Exception as e:
logger.error(f"Job {job_id} failed: {e}")
self.jobs[job_id]['status'] = 'failed'
self.jobs[job_id]['error'] = str(e)
# Initialize generator
generator = HuggingFaceVideoGenerator(
huggingface_token=os.getenv('HUGGINGFACE_TOKEN')
)
@app.route('/generate_video', methods=['POST'])
def generate_video():
"""Main endpoint to receive data from n8n and generate video"""
try:
data = request.get_json()
if not data:
return jsonify({'error': 'No JSON data provided'}), 400
# Validate required fields
if 'images' not in data or not data['images']:
return jsonify({'error': 'No images data provided'}), 400
# Generate unique job ID
job_id = str(uuid.uuid4())
# Initialize job
generator.jobs[job_id] = {
'status': 'queued',
'progress': 0,
'created_at': time.time()
}
# Start processing in background
thread = threading.Thread(
target=generator.process_video_request,
args=(job_id, data)
)
thread.daemon = True
thread.start()
return jsonify({
'job_id': job_id,
'status': 'queued',
'status_url': f"/status/{job_id}",
'message': 'Video generation started'
})
except Exception as e:
logger.error(f"Error in generate_video: {e}")
return jsonify({'error': str(e)}), 500
@app.route('/status/<job_id>', methods=['GET'])
def get_job_status(job_id):
"""Get job status and progress"""
if job_id not in generator.jobs:
return jsonify({'error': 'Job not found'}), 404
job = generator.jobs[job_id]
response = {
'job_id': job_id,
'status': job['status'],
'progress': job['progress']
}
if job['status'] == 'completed':
response['download_url'] = job.get('download_url')
elif job['status'] == 'failed':
response['error'] = job.get('error')
return jsonify(response)
@app.route('/download/<job_id>', methods=['GET'])
def download_video(job_id):
"""Download generated video"""
if job_id not in generator.jobs:
return jsonify({'error': 'Job not found'}), 404
job = generator.jobs[job_id]
if job['status'] != 'completed':
return jsonify({'error': 'Job not completed'}), 400
output_file = job.get('output_file')
if not output_file or not os.path.exists(output_file):
return jsonify({'error': 'Output file not found'}), 404
return send_file(
output_file,
as_attachment=True,
download_name=f"generated_video_{job_id}.mp4"
)
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
return jsonify({
'status': 'healthy',
'tts_available': generator.tts_pipeline is not None,
'text_to_image_available': generator.text_to_image is not None
})
@app.route('/', methods=['GET'])
def index():
"""API documentation"""
return jsonify({
'message': 'Hugging Face Video Generator API',
'endpoints': {
'POST /generate_video': 'Generate video from images and audio',
'GET /status/<job_id>': 'Get job status',
'GET /download/<job_id>': 'Download generated video',
'GET /health': 'Health check'
},
'example_request': {
'images': [
{'url': 'https://example.com/image1.jpg'},
{'base64': '...'},
{'text_prompt': 'A beautiful sunset over mountains'}
],
'video_params': {
'fps': 30,
'duration_per_image': 3.0,
'transition_duration': 0.5,
'resolution': [1920, 1080],
'transition_type': 'fade'
},
'audio_params': {
'text': 'Welcome to our video presentation',
'volume': 1.0
}
}
})
if __name__ == '__main__':
# Run the Flask server
app.run(
host='0.0.0.0',
port=int(os.getenv('PORT', 5000)),
debug=os.getenv('DEBUG', 'false').lower() == 'true'
) |