File size: 2,885 Bytes
6b0a154
7d8ec5e
4bdf8dd
 
49702ec
 
 
c4e3ea5
4bdf8dd
a21c2eb
 
4bdf8dd
 
 
c4e3ea5
5f58155
 
 
 
6b0a154
5f58155
 
 
 
 
 
49702ec
 
 
 
 
4e27730
 
 
 
 
c4fefad
74a72c4
 
 
ef4e447
 
 
5f58155
 
ef4e447
5f58155
 
49702ec
 
 
 
 
 
 
 
5f58155
49702ec
 
 
 
 
 
 
 
 
 
 
6b0a154
c4fefad
4bdf8dd
49702ec
74a72c4
49702ec
 
5f58155
cc1155e
c4e3ea5
 
4bdf8dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas

# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# Inference function to generate captions from images dynamically
def generate_captions_from_image(image):
    if image.mode != "RGB":
        image = image.convert("RGB")
    
    # Preprocess the image and generate a caption
    inputs = processor(image, return_tensors="pt").to(device, torch.float16)
    output = model.generate(**inputs, max_new_tokens=50)
    caption = processor.decode(output[0], skip_special_tokens=True)
    
    return caption

# Function to generate the daily progress report
def generate_dpr(files):
    dpr_text = []
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    
    # Add header to the PDF
    dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
    
    # Process each uploaded file (image)
    for file in files:
        # Open the image from file path
        image = Image.open(file.name)  # Using file.name for filepath
        
        if image.mode != "RGB":
            image = image.convert("RGB")
        
        # Dynamically generate a caption based on the image
        caption = generate_captions_from_image(image)
        
        # Generate DPR section for this image with dynamic caption
        dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
        dpr_text.append(dpr_section)

    # Generate a PDF report
    pdf_path = "dpr_report.pdf"
    c = canvas.Canvas(pdf_path, pagesize=letter)
    c.drawString(100, 750, "Daily Progress Report")
    c.drawString(100, 730, f"Generated on: {current_time}")

    # Add the detailed captions for each image to the PDF (in text format)
    y_position = 700
    for section in dpr_text:
        c.drawString(100, y_position, section)
        y_position -= 100  # Move down for the next section
        if y_position < 100:
            c.showPage()
            y_position = 750

    c.save()

    return pdf_path

# Gradio interface for uploading multiple files
iface = gr.Interface(
    fn=generate_dpr,
    inputs=gr.Files(type="filepath", label="Upload Site Photos"),  # Handle batch upload of images
    outputs="file",
    title="Daily Progress Report Generator",
    description="Upload up to 10 site photos. The AI model will dynamically detect construction activities, materials, and progress and generate a PDF report.",
    allow_flagging="never"  # Optional: Disable flagging
)

iface.launch()