File size: 1,458 Bytes
db53206
 
0e27a33
146e714
0e27a33
e529cf1
0e27a33
e529cf1
0e27a33
e529cf1
0e27a33
e529cf1
0e27a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
import numpy as np
from typing import List, Tuple, Dict, Any

def process_plants(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
    """
    Detect and count plants in the frame using color segmentation.
    Args:
        frame: Input frame as a numpy array.
    Returns:
        Tuple of (list of detections, annotated frame).
    """
    # Convert to HSV color space for plant detection
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    
    # Define range for green color (plants)
    lower_green = np.array([35, 50, 50])
    upper_green = np.array([85, 255, 255])
    mask = cv2.inRange(hsv, lower_green, upper_green)
    
    # Morphological operations to clean up the mask
    kernel = np.ones((5, 5), np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
    
    # Find contours of plants
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    detections = []
    for i, contour in enumerate(contours):
        area = cv2.contourArea(contour)
        if area < 200:  # Ignore small contours
            continue
        
        x, y, w, h = cv2.boundingRect(contour)
        x_min, y_min, x_max, y_max = x, y, x + w, y + h
        
        # Label as a plant
        label = f"Plant {i+1}"
        detections.append({
            "box": [x_min, y_min, x_max, y_max],
            "label": label,
            "type": "plant"
        })
    
    return detections, frame