Spaces:
Runtime error
Runtime error
Update services/detection_service.py
Browse files- services/detection_service.py +32 -54
services/detection_service.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
from ultralytics import YOLO
|
4 |
-
import os
|
5 |
import logging
|
|
|
6 |
|
7 |
# Setup logging
|
8 |
logging.basicConfig(
|
@@ -11,63 +10,42 @@ logging.basicConfig(
|
|
11 |
format="%(asctime)s - %(levelname)s - %(message)s"
|
12 |
)
|
13 |
|
14 |
-
|
15 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
16 |
-
MODEL_PATH = os.path.abspath(os.path.join(BASE_DIR, "../models/yolov8m.pt"))
|
17 |
-
try:
|
18 |
-
model = YOLO(MODEL_PATH)
|
19 |
-
logging.info("Loaded YOLOv8m model for generic detection.")
|
20 |
-
except Exception as e:
|
21 |
-
logging.error(f"Failed to load YOLOv8m model: {str(e)}")
|
22 |
-
model = None
|
23 |
-
|
24 |
-
def process_frame(frame):
|
25 |
"""
|
26 |
-
Process a frame
|
27 |
Args:
|
28 |
frame: Input frame (numpy array)
|
29 |
Returns:
|
30 |
-
|
31 |
-
numpy array: Annotated frame with numbered labels
|
32 |
"""
|
33 |
-
if model is None:
|
34 |
-
logging.error("YOLO model not loaded. Skipping generic detection.")
|
35 |
-
return [], frame
|
36 |
-
|
37 |
try:
|
|
|
38 |
results = model(frame)
|
39 |
-
except Exception as e:
|
40 |
-
logging.error(f"Error during YOLO inference: {str(e)}")
|
41 |
-
return [], frame
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
cls
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
line_counter += 1
|
72 |
-
|
73 |
-
return detections, frame
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
|
|
|
|
3 |
import logging
|
4 |
+
from ultralytics import YOLO
|
5 |
|
6 |
# Setup logging
|
7 |
logging.basicConfig(
|
|
|
10 |
format="%(asctime)s - %(levelname)s - %(message)s"
|
11 |
)
|
12 |
|
13 |
+
def process_frame(frame: np.ndarray) -> tuple[list[dict[str, any]], np.ndarray]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
15 |
+
Process a frame using YOLO model to detect cracks and holes.
|
16 |
Args:
|
17 |
frame: Input frame (numpy array)
|
18 |
Returns:
|
19 |
+
tuple: List of detected items and annotated frame
|
|
|
20 |
"""
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
+
model = YOLO("models/yolov8m.pt")
|
23 |
results = model(frame)
|
|
|
|
|
|
|
24 |
|
25 |
+
detections = []
|
26 |
+
line_counter = 1
|
27 |
+
|
28 |
+
for result in results:
|
29 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
30 |
+
confidences = result.boxes.conf.cpu().numpy()
|
31 |
+
classes = result.boxes.cls.cpu().numpy()
|
32 |
+
|
33 |
+
for box, conf, cls in zip(boxes, confidences, classes):
|
34 |
+
x_min, y_min, x_max, y_max = map(int, box)
|
35 |
+
type_ = "crack" if cls == 0 else "hole" # Assume class 0=crack, 1=hole
|
36 |
+
severity = "Severe" if conf > 0.8 else "Moderate" if conf > 0.5 else "Minor"
|
37 |
+
label = f"Line {line_counter} - {type_.capitalize()} ({severity})"
|
38 |
+
detections.append({
|
39 |
+
"type": type_,
|
40 |
+
"label": label,
|
41 |
+
"box": [x_min, y_min, x_max, y_max],
|
42 |
+
"severity": severity,
|
43 |
+
"confidence": float(conf)
|
44 |
+
})
|
45 |
+
line_counter += 1
|
46 |
+
|
47 |
+
logging.info(f"Detected {len(detections)} objects in frame.")
|
48 |
+
return detections, frame
|
49 |
+
except Exception as e:
|
50 |
+
logging.error(f"Error processing frame: {str(e)}")
|
51 |
+
return [], frame
|
|
|
|
|
|
|
|