Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,10 @@ import cv2
|
|
5 |
import os
|
6 |
from services.video_service import get_video_frame
|
7 |
from services.detection_service import detect_objects
|
8 |
-
from services.thermal_service import detect_thermal_anomalies
|
9 |
from services.shadow_detection import detect_shadow_coverage
|
10 |
from services.salesforce_dispatcher import send_to_salesforce
|
11 |
|
12 |
-
# Global frame generator
|
13 |
frame_gen = get_video_frame("data/drone_day.mp4")
|
14 |
|
15 |
def monitor_feed():
|
@@ -19,46 +18,24 @@ def monitor_feed():
|
|
19 |
cv2.imwrite(temp_path, frame)
|
20 |
|
21 |
detections = detect_objects(temp_path)
|
22 |
-
|
23 |
shadow_flag = detect_shadow_coverage(temp_path)
|
24 |
|
25 |
-
# Prepare alert payload
|
26 |
alert_payload = {
|
27 |
"detections": detections,
|
28 |
-
"thermal": bool(
|
29 |
"shadow_issue": shadow_flag,
|
30 |
}
|
31 |
send_to_salesforce(alert_payload)
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
confidence_max = max(confidence_scores) if confidence_scores else 0
|
37 |
|
38 |
-
|
39 |
-
🚨 Detection Summary 🚨
|
40 |
-
Detected Objects: {', '.join(detected_classes) if detected_classes else 'None'}
|
41 |
-
Thermal Issue: {'Yes' if alert_payload['thermal'] else 'No'}
|
42 |
-
Shadow Issue: {'Yes' if alert_payload['shadow_issue'] else 'No'}
|
43 |
-
Highest Confidence: {confidence_max}%
|
44 |
-
"""
|
45 |
-
|
46 |
-
# Return the frame and the alert
|
47 |
-
return frame, alert_message.strip()
|
48 |
|
49 |
except StopIteration:
|
50 |
-
return None
|
51 |
-
|
52 |
-
# 🎯 Create better Gradio Interface
|
53 |
-
with gr.Blocks(title="Solar Surveillance Feed Simulation") as app:
|
54 |
-
gr.Markdown("# ☀️ Solar Site Live Surveillance")
|
55 |
-
gr.Markdown("### Live Drone Feed with AI Intrusion + Thermal + Shadow Monitoring")
|
56 |
-
|
57 |
-
video_output = gr.Image(label="Drone Camera View", shape=(512, 512))
|
58 |
-
alert_output = gr.Textbox(label="AI Generated Alerts", lines=5)
|
59 |
-
|
60 |
-
live_button = gr.Button("Start Live Surveillance 🚀")
|
61 |
-
|
62 |
-
live_button.click(fn=monitor_feed, outputs=[video_output, alert_output])
|
63 |
|
64 |
-
|
|
|
|
5 |
import os
|
6 |
from services.video_service import get_video_frame
|
7 |
from services.detection_service import detect_objects
|
8 |
+
from services.thermal_service import detect_thermal_anomalies, overlay_thermal_boxes
|
9 |
from services.shadow_detection import detect_shadow_coverage
|
10 |
from services.salesforce_dispatcher import send_to_salesforce
|
11 |
|
|
|
12 |
frame_gen = get_video_frame("data/drone_day.mp4")
|
13 |
|
14 |
def monitor_feed():
|
|
|
18 |
cv2.imwrite(temp_path, frame)
|
19 |
|
20 |
detections = detect_objects(temp_path)
|
21 |
+
thermal_boxes = detect_thermal_anomalies(temp_path)
|
22 |
shadow_flag = detect_shadow_coverage(temp_path)
|
23 |
|
|
|
24 |
alert_payload = {
|
25 |
"detections": detections,
|
26 |
+
"thermal": bool(thermal_boxes),
|
27 |
"shadow_issue": shadow_flag,
|
28 |
}
|
29 |
send_to_salesforce(alert_payload)
|
30 |
|
31 |
+
# Overlay thermal boxes
|
32 |
+
if thermal_boxes:
|
33 |
+
frame = overlay_thermal_boxes(temp_path, thermal_boxes)
|
|
|
34 |
|
35 |
+
return frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
except StopIteration:
|
38 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
iface = gr.Interface(fn=monitor_feed, inputs=[], outputs="image", live=True, title="Solar Surveillance Feed Simulation")
|
41 |
+
iface.launch()
|