Spaces:
Runtime error
Runtime error
Create crack_detection_service.py
Browse files
services/crack_detection_service.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import random
|
6 |
+
|
7 |
+
# Load model
|
8 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
9 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
10 |
+
|
11 |
+
def detect_cracks(frame):
|
12 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
13 |
+
inputs = processor(images=image, return_tensors="pt")
|
14 |
+
outputs = model(**inputs)
|
15 |
+
|
16 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
17 |
+
results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
|
18 |
+
|
19 |
+
cracks = []
|
20 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
21 |
+
if score >= 0.9:
|
22 |
+
severity = random.choice(['Minor', 'Moderate', 'Severe']) # Simulate severity
|
23 |
+
cracks.append({
|
24 |
+
'box': box.tolist(),
|
25 |
+
'severity': severity,
|
26 |
+
'confidence': score.item()
|
27 |
+
})
|
28 |
+
|
29 |
+
return cracks
|