Spaces:
Runtime error
Runtime error
Update services/operations_maintenance/crack_detection.py
Browse files
services/operations_maintenance/crack_detection.py
CHANGED
@@ -1,54 +1,58 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from typing import List, Dict, Any, Tuple
|
5 |
-
from ultralytics import YOLO
|
6 |
-
|
7 |
-
# Setup logging
|
8 |
-
logging.basicConfig(
|
9 |
-
filename="app.log",
|
10 |
-
level=logging.INFO,
|
11 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
12 |
-
)
|
13 |
|
14 |
def detect_cracks_and_holes(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
15 |
"""
|
16 |
-
Detect cracks and holes in
|
17 |
Args:
|
18 |
-
frame: Input frame
|
19 |
Returns:
|
20 |
-
|
21 |
"""
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
+
from typing import List, Tuple, Dict, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def detect_cracks_and_holes(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
6 |
"""
|
7 |
+
Detect cracks and holes in the frame using edge detection and contour analysis.
|
8 |
Args:
|
9 |
+
frame: Input frame as a numpy array.
|
10 |
Returns:
|
11 |
+
Tuple of (list of detections, annotated frame).
|
12 |
"""
|
13 |
+
# Convert to grayscale
|
14 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
15 |
+
|
16 |
+
# Apply Gaussian blur to reduce noise
|
17 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
18 |
+
|
19 |
+
# Edge detection using Canny
|
20 |
+
edges = cv2.Canny(blurred, 50, 150)
|
21 |
+
|
22 |
+
# Dilate edges to connect nearby edges
|
23 |
+
kernel = np.ones((3, 3), np.uint8)
|
24 |
+
dilated = cv2.dilate(edges, kernel, iterations=1)
|
25 |
+
|
26 |
+
# Find contours
|
27 |
+
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
28 |
+
|
29 |
+
detections = []
|
30 |
+
for i, contour in enumerate(contours):
|
31 |
+
# Calculate the area of the contour
|
32 |
+
area = cv2.contourArea(contour)
|
33 |
+
if area < 100: # Ignore small contours
|
34 |
+
continue
|
35 |
+
|
36 |
+
# Get bounding box
|
37 |
+
x, y, w, h = cv2.boundingRect(contour)
|
38 |
+
x_min, y_min, x_max, y_max = x, y, x + w, y + h
|
39 |
+
|
40 |
+
# Determine if it's a crack or hole based on shape and area
|
41 |
+
perimeter = cv2.arcLength(contour, True)
|
42 |
+
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
|
43 |
+
|
44 |
+
# Classify as hole if more circular, crack if elongated
|
45 |
+
dtype = "hole" if circularity > 0.5 else "crack"
|
46 |
+
label = f"{dtype.capitalize()} {i+1}"
|
47 |
+
|
48 |
+
# Determine severity based on area
|
49 |
+
severity = "Severe" if area > 1000 else "Moderate" if area > 500 else "Mild"
|
50 |
+
|
51 |
+
detections.append({
|
52 |
+
"box": [x_min, y_min, x_max, y_max],
|
53 |
+
"label": label,
|
54 |
+
"type": dtype,
|
55 |
+
"severity": severity
|
56 |
+
})
|
57 |
+
|
58 |
+
return detections, frame
|