Spaces:
Runtime error
Runtime error
Update services/operations_maintenance/crack_detection.py
Browse files
services/operations_maintenance/crack_detection.py
CHANGED
@@ -3,57 +3,83 @@ import numpy as np
|
|
3 |
from ultralytics import YOLO
|
4 |
import os
|
5 |
import random
|
|
|
|
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
9 |
-
MODEL_PATH = os.path.abspath(os.path.join(BASE_DIR, "../../models/yolov8m
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
def detect_cracks_and_objects(frame):
|
13 |
"""
|
14 |
-
Detect cracks and other objects in a frame using YOLOv8m
|
|
|
15 |
Args:
|
16 |
-
frame: Input frame
|
|
|
17 |
Returns:
|
18 |
-
|
19 |
"""
|
20 |
-
#
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# Process detections
|
27 |
for r in results:
|
28 |
for box in r.boxes:
|
29 |
conf = float(box.conf[0])
|
30 |
-
if conf < 0.
|
31 |
continue
|
32 |
cls = int(box.cls[0])
|
33 |
label = model.names[cls]
|
34 |
-
if label
|
35 |
continue
|
36 |
-
xyxy = box.xyxy[0].cpu().numpy()
|
37 |
-
x_min, y_min, x_max, y_max =
|
38 |
-
|
39 |
-
|
40 |
-
severity = None
|
41 |
-
if label == "crack":
|
42 |
-
severity = random.choice(["low", "medium", "high"])
|
43 |
-
|
44 |
-
# Add numbered label
|
45 |
detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})"
|
46 |
-
|
47 |
"type": label,
|
48 |
"label": detection_label,
|
49 |
"confidence": conf,
|
50 |
-
"coordinates": [x_min, y_min, x_max, y_max]
|
51 |
-
|
52 |
-
|
53 |
-
item["severity"] = severity
|
54 |
-
|
55 |
-
detected_items.append(item)
|
56 |
|
57 |
line_counter += 1
|
58 |
|
59 |
-
|
|
|
|
3 |
from ultralytics import YOLO
|
4 |
import os
|
5 |
import random
|
6 |
+
import logging
|
7 |
+
from typing import List, Dict, Any
|
8 |
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(
|
11 |
+
filename="app.log",
|
12 |
+
level=logging.INFO,
|
13 |
+
format="%(asctime)s - %(levelname)s - %(message)s"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Define base directory and model path
|
17 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
MODEL_PATH = os.path.abspath(os.path.join(BASE_DIR, "../../models/yolov8m.pt"))
|
19 |
+
|
20 |
+
# Initialize YOLO model
|
21 |
+
try:
|
22 |
+
model = YOLO(MODEL_PATH)
|
23 |
+
logging.info("Loaded YOLOv8m model for crack detection.")
|
24 |
+
logging.info(f"Model class names: {model.names}")
|
25 |
+
except Exception as e:
|
26 |
+
logging.error(f"Failed to load YOLOv8m model: {str(e)}")
|
27 |
+
model = None
|
28 |
|
29 |
+
def detect_cracks_and_objects(frame: np.ndarray) -> List[Dict[str, Any]]:
|
30 |
"""
|
31 |
+
Detect cracks and other objects in a video frame using YOLOv8m.
|
32 |
+
|
33 |
Args:
|
34 |
+
frame (np.ndarray): Input frame in BGR format.
|
35 |
+
|
36 |
Returns:
|
37 |
+
List[Dict[str, Any]]: List of detected items with type, label, confidence, coordinates, and severity.
|
38 |
"""
|
39 |
+
# Validate input frame
|
40 |
+
if not isinstance(frame, np.ndarray) or frame.size == 0:
|
41 |
+
logging.error("Invalid input frame provided to crack_detection.")
|
42 |
+
return []
|
43 |
|
44 |
+
# Check if model is loaded
|
45 |
+
if model is None:
|
46 |
+
logging.error("YOLO model not loaded. Skipping crack detection.")
|
47 |
+
return []
|
48 |
+
|
49 |
+
try:
|
50 |
+
# Perform YOLO inference
|
51 |
+
results = model(frame, verbose=False)
|
52 |
+
logging.debug("Completed YOLO inference for crack detection.")
|
53 |
+
except Exception as e:
|
54 |
+
logging.error(f"Error during YOLO inference: {str(e)}")
|
55 |
+
return []
|
56 |
+
|
57 |
+
detections: List[Dict[str, Any]] = []
|
58 |
+
line_counter = 1
|
59 |
|
|
|
60 |
for r in results:
|
61 |
for box in r.boxes:
|
62 |
conf = float(box.conf[0])
|
63 |
+
if conf < 0.3:
|
64 |
continue
|
65 |
cls = int(box.cls[0])
|
66 |
label = model.names[cls]
|
67 |
+
if label != "crack":
|
68 |
continue
|
69 |
+
xyxy = box.xyxy[0].cpu().numpy().astype(int)
|
70 |
+
x_min, y_min, x_max, y_max = xyxy
|
71 |
+
|
72 |
+
severity = random.choice(["low", "medium", "high"])
|
|
|
|
|
|
|
|
|
|
|
73 |
detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})"
|
74 |
+
detections.append({
|
75 |
"type": label,
|
76 |
"label": detection_label,
|
77 |
"confidence": conf,
|
78 |
+
"coordinates": [x_min, y_min, x_max, y_max],
|
79 |
+
"severity": severity
|
80 |
+
})
|
|
|
|
|
|
|
81 |
|
82 |
line_counter += 1
|
83 |
|
84 |
+
logging.info(f"Detected {len(detections)} cracks in operations_maintenance.")
|
85 |
+
return detections
|