Spaces:
Runtime error
Runtime error
Update services/road_safety/pothole_crack_detection.py
Browse files
services/road_safety/pothole_crack_detection.py
CHANGED
@@ -6,39 +6,27 @@ import random
|
|
6 |
import logging
|
7 |
from typing import Tuple, List, Dict, Any
|
8 |
|
9 |
-
# Configure logging
|
10 |
logging.basicConfig(
|
11 |
filename="app.log",
|
12 |
level=logging.INFO,
|
13 |
format="%(asctime)s - %(levelname)s - %(message)s"
|
14 |
)
|
15 |
|
16 |
-
# Define base directory and model path
|
17 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
MODEL_PATH = os.path.abspath(os.path.join(BASE_DIR, "../../models/yolov8m-seg.pt"))
|
19 |
|
20 |
-
# Initialize YOLO model
|
21 |
try:
|
22 |
model = YOLO(MODEL_PATH)
|
23 |
logging.info("Successfully loaded YOLOv8m-seg model for pothole and crack detection.")
|
24 |
-
# Log the model's class names for debugging
|
25 |
logging.info(f"Model class names: {model.names}")
|
26 |
except Exception as e:
|
27 |
logging.error(f"Failed to load YOLOv8m-seg model: {str(e)}")
|
28 |
model = None
|
29 |
|
30 |
def detect_potholes_and_cracks(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
31 |
-
"""
|
32 |
-
Detect potholes, cracks, and debris in a video frame using YOLOv8m-seg.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
frame (np.ndarray): Input frame in BGR format.
|
36 |
-
|
37 |
-
Returns:
|
38 |
-
Tuple[List[Dict[str, Any]], np.ndarray]: A tuple containing:
|
39 |
-
- List of detected items (dictionaries with type, label, confidence, coordinates, and severity).
|
40 |
-
- Annotated frame with bounding boxes and labels.
|
41 |
-
"""
|
42 |
# Validate input frame
|
43 |
if not isinstance(frame, np.ndarray) or frame.size == 0:
|
44 |
logging.error("Invalid input frame provided to pothole_crack_detection.")
|
@@ -50,50 +38,40 @@ def detect_potholes_and_cracks(frame: np.ndarray) -> Tuple[List[Dict[str, Any]],
|
|
50 |
return [], frame
|
51 |
|
52 |
try:
|
53 |
-
# Perform YOLO inference
|
54 |
-
results = model(frame, verbose=False)
|
55 |
logging.debug("Completed YOLO inference for pothole and crack detection.")
|
56 |
except Exception as e:
|
57 |
logging.error(f"Error during YOLO inference: {str(e)}")
|
58 |
return [], frame
|
59 |
|
60 |
detections: List[Dict[str, Any]] = []
|
61 |
-
line_counter = 1
|
62 |
|
63 |
-
# Process each detection result
|
64 |
for result in results:
|
65 |
for box in result.boxes:
|
66 |
-
# Extract confidence score and ensure it's above threshold
|
67 |
conf = float(box.conf[0])
|
68 |
-
if conf < 0.3:
|
69 |
continue
|
70 |
|
71 |
-
# Extract class label
|
72 |
cls = int(box.cls[0])
|
73 |
label = model.names[cls]
|
74 |
-
|
75 |
-
# Filter for relevant classes
|
76 |
if label not in ["crack", "pothole", "debris"]:
|
77 |
continue
|
78 |
|
79 |
-
# Extract bounding box coordinates
|
80 |
xyxy = box.xyxy[0].cpu().numpy().astype(int)
|
81 |
x_min, y_min, x_max, y_max = xyxy
|
82 |
|
83 |
-
# Assign color based on detection type (as per user requirements)
|
84 |
severity = None
|
85 |
if label == "crack":
|
86 |
color = (255, 0, 0) # Red for cracks
|
87 |
severity = random.choice(["low", "medium", "high"])
|
88 |
elif label == "pothole":
|
89 |
-
color = (
|
90 |
else: # debris
|
91 |
-
color = (
|
92 |
|
93 |
-
# Create detection label with line number
|
94 |
detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})"
|
95 |
-
|
96 |
-
# Create detection dictionary
|
97 |
item = {
|
98 |
"type": label,
|
99 |
"label": detection_label,
|
@@ -105,7 +83,6 @@ def detect_potholes_and_cracks(frame: np.ndarray) -> Tuple[List[Dict[str, Any]],
|
|
105 |
|
106 |
detections.append(item)
|
107 |
|
108 |
-
# Draw bounding box and label on the frame
|
109 |
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
|
110 |
cv2.putText(
|
111 |
frame,
|
|
|
6 |
import logging
|
7 |
from typing import Tuple, List, Dict, Any
|
8 |
|
9 |
+
# Configure logging
|
10 |
logging.basicConfig(
|
11 |
filename="app.log",
|
12 |
level=logging.INFO,
|
13 |
format="%(asctime)s - %(levelname)s - %(message)s"
|
14 |
)
|
15 |
|
16 |
+
# Define base directory and model path
|
17 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
MODEL_PATH = os.path.abspath(os.path.join(BASE_DIR, "../../models/yolov8m-seg.pt"))
|
19 |
|
20 |
+
# Initialize YOLO model
|
21 |
try:
|
22 |
model = YOLO(MODEL_PATH)
|
23 |
logging.info("Successfully loaded YOLOv8m-seg model for pothole and crack detection.")
|
|
|
24 |
logging.info(f"Model class names: {model.names}")
|
25 |
except Exception as e:
|
26 |
logging.error(f"Failed to load YOLOv8m-seg model: {str(e)}")
|
27 |
model = None
|
28 |
|
29 |
def detect_potholes_and_cracks(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Validate input frame
|
31 |
if not isinstance(frame, np.ndarray) or frame.size == 0:
|
32 |
logging.error("Invalid input frame provided to pothole_crack_detection.")
|
|
|
38 |
return [], frame
|
39 |
|
40 |
try:
|
41 |
+
# Perform YOLO inference
|
42 |
+
results = model(frame, verbose=False)
|
43 |
logging.debug("Completed YOLO inference for pothole and crack detection.")
|
44 |
except Exception as e:
|
45 |
logging.error(f"Error during YOLO inference: {str(e)}")
|
46 |
return [], frame
|
47 |
|
48 |
detections: List[Dict[str, Any]] = []
|
49 |
+
line_counter = 1
|
50 |
|
|
|
51 |
for result in results:
|
52 |
for box in result.boxes:
|
|
|
53 |
conf = float(box.conf[0])
|
54 |
+
if conf < 0.3:
|
55 |
continue
|
56 |
|
|
|
57 |
cls = int(box.cls[0])
|
58 |
label = model.names[cls]
|
|
|
|
|
59 |
if label not in ["crack", "pothole", "debris"]:
|
60 |
continue
|
61 |
|
|
|
62 |
xyxy = box.xyxy[0].cpu().numpy().astype(int)
|
63 |
x_min, y_min, x_max, y_max = xyxy
|
64 |
|
|
|
65 |
severity = None
|
66 |
if label == "crack":
|
67 |
color = (255, 0, 0) # Red for cracks
|
68 |
severity = random.choice(["low", "medium", "high"])
|
69 |
elif label == "pothole":
|
70 |
+
color = (255, 0, 0) # Red for potholes
|
71 |
else: # debris
|
72 |
+
color = (255, 215, 0) # Gold for debris
|
73 |
|
|
|
74 |
detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})"
|
|
|
|
|
75 |
item = {
|
76 |
"type": label,
|
77 |
"label": detection_label,
|
|
|
83 |
|
84 |
detections.append(item)
|
85 |
|
|
|
86 |
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
|
87 |
cv2.putText(
|
88 |
frame,
|