Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,134 @@
|
|
|
|
1 |
import cv2
|
2 |
import time
|
3 |
import os
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
from services.thermal_service import detect_thermal_anomalies
|
6 |
from services.overlay_service import overlay_boxes
|
7 |
from services.metrics_service import update_metrics
|
8 |
|
9 |
-
|
10 |
paused = False
|
11 |
-
frame_rate = 1
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
|
|
|
|
16 |
|
|
|
17 |
def monitor_feed():
|
18 |
global paused
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
if paused:
|
23 |
-
|
24 |
-
|
25 |
-
frame = get_random_video_frame()
|
26 |
-
|
27 |
-
|
28 |
|
|
|
|
|
29 |
|
|
|
30 |
detected_boxes = detect_thermal_anomalies(frame)
|
31 |
frame = overlay_boxes(frame, detected_boxes)
|
32 |
-
|
33 |
metrics = update_metrics(detected_boxes)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
with gr.Row():
|
46 |
with gr.Column(scale=3):
|
47 |
-
video_output = gr.Image(label="Live Video Feed", elem_id="video-feed")
|
48 |
with gr.Column(scale=1):
|
49 |
-
metrics_output = gr.Label(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
with gr.Row():
|
52 |
-
pause_btn = gr.Button("
|
53 |
-
resume_btn = gr.Button("
|
54 |
-
frame_slider = gr.Slider(0.
|
55 |
|
56 |
def toggle_pause():
|
57 |
global paused
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def streaming_loop():
|
60 |
while True:
|
61 |
-
frame, metrics = monitor_feed()
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
time.sleep(frame_rate)
|
64 |
|
65 |
-
app.load(streaming_loop, outputs=[video_output, metrics_output])
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import cv2
|
3 |
import time
|
4 |
import os
|
5 |
+
import random
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
from datetime import datetime
|
9 |
+
from services.video_service import get_next_video_frame
|
10 |
from services.thermal_service import detect_thermal_anomalies
|
11 |
from services.overlay_service import overlay_boxes
|
12 |
from services.metrics_service import update_metrics
|
13 |
|
14 |
+
# Globals
|
15 |
paused = False
|
16 |
+
frame_rate = 1
|
17 |
+
frame_count = 0
|
18 |
+
log_entries = []
|
19 |
+
anomaly_counts = []
|
20 |
|
21 |
+
# Constants
|
22 |
+
TEMP_IMAGE_PATH = "temp.jpg"
|
23 |
|
24 |
+
# Core monitor function
|
25 |
def monitor_feed():
|
26 |
global paused
|
27 |
+
global frame_count
|
28 |
|
29 |
+
frame = None
|
30 |
|
31 |
if paused:
|
32 |
+
if os.path.exists(TEMP_IMAGE_PATH):
|
33 |
+
frame = cv2.imread(TEMP_IMAGE_PATH)
|
|
|
|
|
|
|
34 |
|
35 |
+
if frame is None:
|
36 |
+
frame = get_next_video_frame()
|
37 |
|
38 |
+
if not paused:
|
39 |
detected_boxes = detect_thermal_anomalies(frame)
|
40 |
frame = overlay_boxes(frame, detected_boxes)
|
41 |
+
cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
|
42 |
metrics = update_metrics(detected_boxes)
|
43 |
+
else:
|
44 |
+
metrics = update_metrics([])
|
45 |
+
|
46 |
+
frame = cv2.resize(frame, (640, 480)) # Fixed window size
|
47 |
+
|
48 |
+
# Add frame count and timestamp
|
49 |
+
frame_count += 1
|
50 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
51 |
+
cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
52 |
+
cv2.putText(frame, f"{timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
53 |
+
|
54 |
+
# Update logs and anomaly counts
|
55 |
+
anomaly_detected = len(metrics['anomalies']) if 'anomalies' in metrics else 0
|
56 |
+
log_entries.append(f"{timestamp} - Frame {frame_count} - Anomalies Detected: {anomaly_detected}")
|
57 |
+
anomaly_counts.append(anomaly_detected)
|
58 |
+
|
59 |
+
if len(log_entries) > 100:
|
60 |
+
log_entries.pop(0)
|
61 |
+
if len(anomaly_counts) > 100:
|
62 |
+
anomaly_counts.pop(0)
|
63 |
+
|
64 |
+
return frame[:, :, ::-1], metrics, "\n".join(log_entries[-10:]), generate_chart()
|
65 |
+
|
66 |
+
# Chart generator
|
67 |
+
def generate_chart():
|
68 |
+
fig, ax = plt.subplots(figsize=(4, 2))
|
69 |
+
ax.plot(anomaly_counts[-50:], marker='o')
|
70 |
+
ax.set_title("Anomalies Over Time")
|
71 |
+
ax.set_xlabel("Frame")
|
72 |
+
ax.set_ylabel("Count")
|
73 |
+
fig.tight_layout()
|
74 |
+
chart_path = "chart_temp.png"
|
75 |
+
fig.savefig(chart_path)
|
76 |
+
plt.close(fig)
|
77 |
+
return chart_path
|
78 |
+
|
79 |
+
# Gradio UI
|
80 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
81 |
+
gr.Markdown("# \ud83c\udf10 Thermal Anomaly Monitoring Dashboard", elem_id="main-title")
|
82 |
+
|
83 |
+
status_text = gr.Markdown("**Status:** \ud83d\udfe2 Running", elem_id="status-banner")
|
84 |
|
85 |
with gr.Row():
|
86 |
with gr.Column(scale=3):
|
87 |
+
video_output = gr.Image(label="Live Video Feed", elem_id="video-feed", width=640, height=480)
|
88 |
with gr.Column(scale=1):
|
89 |
+
metrics_output = gr.Label(label="Live Metrics", elem_id="metrics")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
with gr.Column():
|
93 |
+
logs_output = gr.Textbox(label="Live Logs", lines=10)
|
94 |
+
with gr.Column():
|
95 |
+
chart_output = gr.Image(label="Detection Trends")
|
96 |
|
97 |
with gr.Row():
|
98 |
+
pause_btn = gr.Button("\u23f8\ufe0f Pause")
|
99 |
+
resume_btn = gr.Button("\u25b6\ufe0f Resume")
|
100 |
+
frame_slider = gr.Slider(0.2, 5, value=1, label="Frame Interval (seconds)")
|
101 |
|
102 |
def toggle_pause():
|
103 |
global paused
|
104 |
+
paused = True
|
105 |
+
return "**Status:** \u23f8\ufe0f Paused"
|
106 |
+
|
107 |
+
def toggle_resume():
|
108 |
+
global paused
|
109 |
+
paused = False
|
110 |
+
return "**Status:** \ud83d\udfe2 Running"
|
111 |
+
|
112 |
+
def set_frame_rate(val):
|
113 |
+
global frame_rate
|
114 |
+
frame_rate = val
|
115 |
+
|
116 |
+
pause_btn.click(toggle_pause, outputs=status_text)
|
117 |
+
resume_btn.click(toggle_resume, outputs=status_text)
|
118 |
+
frame_slider.change(set_frame_rate, inputs=[frame_slider])
|
119 |
|
120 |
def streaming_loop():
|
121 |
while True:
|
122 |
+
frame, metrics, logs, chart = monitor_feed()
|
123 |
+
# Check for alerts
|
124 |
+
if anomaly_counts and anomaly_counts[-1] >= 5:
|
125 |
+
status = "**Status:** \ud83d\udd34 Alert: High Anomaly Rate"
|
126 |
+
else:
|
127 |
+
status = "**Status:** \ud83d\udfe2 Running" if not paused else "**Status:** \u23f8\ufe0f Paused"
|
128 |
+
yield [frame, metrics, logs, chart, status]
|
129 |
time.sleep(frame_rate)
|
130 |
|
131 |
+
app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, chart_output, status_text])
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
app.launch()
|