Spaces:
Runtime error
Runtime error
Update services/operations_maintenance/pothole_detection.py
Browse files
services/operations_maintenance/pothole_detection.py
CHANGED
@@ -1,85 +1,37 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
from ultralytics import YOLO
|
4 |
-
import
|
5 |
-
import logging
|
6 |
-
from typing import Tuple, List, Dict, Any
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
filename="app.log",
|
11 |
-
level=logging.INFO,
|
12 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
13 |
-
)
|
14 |
-
|
15 |
-
# Define base directory and model path
|
16 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
17 |
-
MODEL_PATH = os.path.abspath(os.path.join(BASE_DIR, "../../models/yolov8m.pt"))
|
18 |
-
|
19 |
-
# Initialize YOLO model
|
20 |
-
try:
|
21 |
-
model = YOLO(MODEL_PATH)
|
22 |
-
logging.info("Loaded YOLOv8m model for pothole detection.")
|
23 |
-
logging.info(f"Model class names: {model.names}")
|
24 |
-
except Exception as e:
|
25 |
-
logging.error(f"Failed to load YOLOv8m model: {str(e)}")
|
26 |
-
model = None
|
27 |
|
28 |
def process_potholes(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
label = model.names[cls]
|
57 |
-
if label != "pothole":
|
58 |
-
continue
|
59 |
-
xyxy = box.xyxy[0].cpu().numpy().astype(int)
|
60 |
-
x_min, y_min, x_max, y_max = xyxy
|
61 |
-
|
62 |
-
detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})"
|
63 |
-
detections.append({
|
64 |
-
"type": label,
|
65 |
-
"label": detection_label,
|
66 |
-
"confidence": conf,
|
67 |
-
"coordinates": [x_min, y_min, x_max, y_max]
|
68 |
-
})
|
69 |
-
|
70 |
-
color = (255, 0, 0) # Red for potholes
|
71 |
-
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
|
72 |
-
cv2.putText(
|
73 |
-
frame,
|
74 |
-
detection_label,
|
75 |
-
(x_min, y_min - 10),
|
76 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
77 |
-
0.6,
|
78 |
-
color,
|
79 |
-
2
|
80 |
-
)
|
81 |
-
|
82 |
-
line_counter += 1
|
83 |
-
|
84 |
-
logging.info(f"Detected {len(detections)} potholes in operations_maintenance.")
|
85 |
return detections, frame
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
from ultralytics import YOLO
|
4 |
+
from typing import List, Tuple, Dict, Any
|
|
|
|
|
5 |
|
6 |
+
# Load YOLOv8 model for pothole detection
|
7 |
+
model = YOLO("models/yolov8n.pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def process_potholes(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
10 |
+
"""
|
11 |
+
Detect potholes in the frame using YOLOv8.
|
12 |
+
Args:
|
13 |
+
frame: Input frame as a numpy array.
|
14 |
+
Returns:
|
15 |
+
Tuple of (list of detections, annotated frame).
|
16 |
+
"""
|
17 |
+
# Perform inference
|
18 |
+
results = model(frame, classes=[0], conf=0.5) # Class 0 assumed for potholes
|
19 |
+
|
20 |
+
detections = []
|
21 |
+
for i, r in enumerate(results[0].boxes):
|
22 |
+
x_min, y_min, x_max, y_max = map(int, r.xyxy[0])
|
23 |
+
conf = float(r.conf)
|
24 |
+
|
25 |
+
# Determine severity based on size
|
26 |
+
area = (x_max - x_min) * (y_max - y_min)
|
27 |
+
severity = "Severe" if area > 1000 or conf > 0.8 else "Moderate" if area > 500 or conf > 0.6 else "Mild"
|
28 |
+
|
29 |
+
detections.append({
|
30 |
+
"box": [x_min, y_min, x_max, y_max],
|
31 |
+
"label": f"Pothole {i+1}",
|
32 |
+
"type": "pothole",
|
33 |
+
"confidence": conf,
|
34 |
+
"severity": severity
|
35 |
+
})
|
36 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return detections, frame
|