Spaces:
Sleeping
Sleeping
File size: 27,278 Bytes
eb6ee52 fa547a5 80bd48b a35cb39 ec63c92 1ba758f 5f23738 2e67668 25e43a0 fa547a5 1ba758f 451989a 2e67668 451989a 2e67668 451989a 2e67668 451989a 2e67668 451989a 3c35ee6 451989a 5f23738 451989a 2e67668 451989a 424bddb 451989a 2e67668 451989a 424bddb 451989a 424bddb 451989a 424bddb 62ae84e fa547a5 9ef90b7 25e43a0 09761cd 424bddb de5aab6 1ba758f 424bddb de5aab6 25e43a0 de5aab6 25e43a0 de5aab6 25e43a0 de5aab6 25e43a0 3c35ee6 25e43a0 424bddb 3c35ee6 424bddb 3c35ee6 9ef90b7 2e67668 424bddb 25e43a0 424bddb 25e43a0 424bddb 2e67668 424bddb 2e67668 9ef90b7 451989a 4fe77cf b957a42 464d88b 8053086 424bddb 993ae7e 8053086 424bddb 8053086 de5aab6 993ae7e 451989a 2e67668 8053086 424bddb 9ef90b7 424bddb 451989a 424bddb 451989a 424bddb 993ae7e 2e67668 451989a d95bdc7 ffdbaab 2e67668 ffdbaab 25e43a0 2f6c98b 25e43a0 de5aab6 25e43a0 451989a 2e67668 451989a 424bddb 993ae7e 2e67668 451989a 1ba758f 2f6c98b 451989a 2e67668 5f23738 b957a42 451989a b957a42 2f6c98b b957a42 2f6c98b 2e67668 b957a42 2f6c98b 4fe77cf b957a42 2f6c98b b957a42 2f6c98b 5f23738 451989a de5aab6 2f6c98b de5aab6 464d88b 2e67668 2f6c98b 5f23738 2f6c98b 5f23738 2e67668 2f6c98b 424bddb 2e67668 de5aab6 5f23738 b957a42 464d88b 451989a 464d88b 1ba758f a7d0696 1ba758f 2f6c98b 2e67668 b957a42 2e67668 de5aab6 2e67668 424bddb b957a42 1ba758f 451989a ec63c92 2e67668 1ba758f ec63c92 1ba758f 2e67668 ec63c92 451989a 5f23738 2e67668 5f23738 b957a42 ec63c92 2e67668 b957a42 de5aab6 b957a42 fa547a5 451989a ffdbaab 2e67668 1ba758f 424bddb 2e67668 424bddb 451989a de5aab6 2f6c98b de5aab6 2f6c98b de5aab6 b957a42 e9d1ccd 424bddb e9d1ccd 424bddb e9d1ccd 2e67668 fa547a5 2e67668 424bddb 993ae7e 451989a 2e67668 451989a 424bddb 2e67668 451989a 4fe77cf 451989a b957a42 424bddb b957a42 dd4bee9 9ef90b7 b957a42 424bddb b957a42 424bddb b957a42 9ef90b7 464d88b 43bba30 b957a42 43bba30 b957a42 43bba30 b957a42 43bba30 b957a42 464d88b 424bddb de8a84a 8f7a4e6 424bddb dd4bee9 2e67668 451989a 424bddb 451989a fa547a5 b957a42 1ba758f 424bddb 993ae7e 424bddb ffdbaab 8f7a4e6 b957a42 2e67668 b957a42 1a1d215 451989a 8f7a4e6 fa547a5 761d854 fa547a5 451989a fa547a5 9ef90b7 fa547a5 451989a fa547a5 424bddb 9ef90b7 424bddb 9ef90b7 451989a b957a42 464d88b fa547a5 4e2d873 761d854 424bddb 7390c0c 424bddb 9ef90b7 424bddb 9ef90b7 424bddb 761d854 a35cb39 424bddb fa547a5 2f6c98b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
import os
import gradio as gr
import cv2
import time
import json
import random
import logging
import matplotlib.pyplot as plt
import shutil
from datetime import datetime
from collections import Counter
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
# Suppress Ultralytics warning by setting a writable config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
# Import service modules
try:
from services.video_service import get_next_video_frame, reset_video_index, preload_video, release_video
from services.detection_service import process_frame as process_generic
from services.metrics_service import update_metrics
from services.overlay_service import overlay_boxes
from services.salesforce_dispatcher import send_to_salesforce
from services.shadow_detection import detect_shadow_coverage
from services.thermal_service import process_thermal
from services.map_service import generate_map
# Under Construction services
from services.under_construction.earthwork_detection import process_earthwork
from services.under_construction.culvert_check import process_culverts
from services.under_construction.bridge_pier_check import process_bridge_piers
# Operations Maintenance services
from services.operations_maintenance.crack_detection import detect_cracks_and_holes
from services.operations_maintenance.pothole_detection import process_potholes
from services.operations_maintenance.signage_check import process_signages
# Road Safety services
from services.road_safety.barrier_check import process_barriers
from services.road_safety.lighting_check import process_lighting
from services.road_safety.accident_spot_check import process_accident_spots
from services.road_safety.pothole_crack_detection import detect_potholes_and_cracks
# Plantation services
from services.plantation.plant_count import process_plants
from services.plantation.plant_health import process_plant_health
from services.plantation.missing_patch_check import process_missing_patches
except ImportError as e:
print(f"Failed to import service modules: {str(e)}")
logging.error(f"Import error: {str(e)}")
exit(1)
# Configure logging
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Global variables
paused: bool = False
frame_rate: float = 0.3
frame_count: int = 0
log_entries: List[str] = []
detected_counts: List[int] = []
last_frame: Optional[np.ndarray] = None
last_metrics: Dict[str, Any] = {}
last_timestamp: str = ""
detected_plants: List[str] = [] # For plants and missing patches
detected_issues: List[str] = [] # For cracks, holes, and missing patches
gps_coordinates: List[List[float]] = []
media_loaded: bool = False
active_service: Optional[str] = None
is_video: bool = True
static_image: Optional[np.ndarray] = None
# Constants
DEFAULT_VIDEO_PATH = "sample.mp4"
TEMP_IMAGE_PATH = os.path.abspath("temp.jpg")
CAPTURED_FRAMES_DIR = os.path.abspath("captured_frames")
OUTPUT_DIR = os.path.abspath("outputs")
TEMP_MEDIA_DIR = os.path.abspath("temp_media")
# Ensure directories exist with write permissions
for directory in [CAPTURED_FRAMES_DIR, OUTPUT_DIR, TEMP_MEDIA_DIR]:
os.makedirs(directory, exist_ok=True)
os.chmod(directory, 0o777) # Ensure write permissions
def initialize_media(media_file: Optional[Any] = None) -> str:
global media_loaded, is_video, static_image, log_entries, frame_count
release_video()
static_image = None
frame_count = 0 # Reset frame count on new media load
# If no media file is provided, try the default video
if media_file is None:
media_path = DEFAULT_VIDEO_PATH
log_entries.append(f"No media uploaded, attempting to load default: {media_path}")
logging.info(f"No media uploaded, attempting to load default: {media_path}")
else:
# Validate media file
if not hasattr(media_file, 'name') or not media_file.name:
status = "Error: Invalid media file uploaded."
log_entries.append(status)
logging.error(status)
media_loaded = False
return status
# Copy the uploaded file to a known location to avoid path issues
original_path = media_file.name
file_extension = os.path.splitext(original_path)[1].lower()
temp_media_path = os.path.join(TEMP_MEDIA_DIR, f"uploaded_media{file_extension}")
try:
shutil.copy(original_path, temp_media_path)
media_path = temp_media_path
log_entries.append(f"Copied uploaded file to: {media_path}")
logging.info(f"Copied uploaded file to: {media_path}")
except Exception as e:
status = f"Error copying uploaded file: {str(e)}"
log_entries.append(status)
logging.error(status)
media_loaded = False
return status
# Verify the file exists
if not os.path.exists(media_path):
status = f"Error: Media file '{media_path}' not found."
log_entries.append(status)
logging.error(status)
media_loaded = False
return status
try:
# Determine if the file is a video or image
if file_extension in (".mp4", ".avi"):
is_video = True
preload_video(media_path)
media_loaded = True
status = f"Successfully loaded video: {media_path}"
elif file_extension in (".jpg", ".jpeg", ".png"):
is_video = False
static_image = cv2.imread(media_path)
if static_image is None:
raise RuntimeError(f"Failed to load image: {media_path}")
static_image = cv2.resize(static_image, (320, 240))
media_loaded = True
status = f"Successfully loaded image: {media_path}"
else:
media_loaded = False
status = "Error: Unsupported file format. Use .mp4, .avi, .jpg, .jpeg, or .png."
log_entries.append(status)
logging.error(status)
return status
log_entries.append(status)
logging.info(status)
return status
except Exception as e:
media_loaded = False
status = f"Error loading media: {str(e)}"
log_entries.append(status)
logging.error(status)
return status
def set_active_service(
service_name: str,
uc_val: bool,
om_val: bool,
rs_val: bool,
pl_val: bool
) -> Tuple[Optional[str], str]:
global active_service
toggles = {
"under_construction": uc_val,
"operations_maintenance": om_val,
"road_safety": rs_val,
"plantation": pl_val
}
active_count = sum(toggles.values())
if active_count > 1:
log_entries.append("Error: Only one service category can be active at a time.")
logging.error("Multiple service categories enabled simultaneously.")
return None, "Error: Please enable only one service category at a time."
for service, enabled in toggles.items():
if enabled:
active_service = service
log_entries.append(f"{service.replace('_', ' ').title()} Services Enabled")
logging.info(f"{service} services enabled")
return active_service, f"{service.replace('_', ' ').title()} Services: Enabled"
active_service = None
log_entries.append("No service category enabled.")
logging.info("No service category enabled.")
return None, "No Service Category Enabled"
def generate_line_chart() -> Optional[str]:
if not detected_counts:
return None
fig, ax = plt.subplots(figsize=(4, 2))
ax.plot(detected_counts[-50:], marker='o', color='#4682B4')
ax.set_title("Detections Over Time")
ax.set_xlabel("Frame")
ax.set_ylabel("Count")
ax.grid(True)
fig.tight_layout()
chart_path = "chart_temp.png"
try:
fig.savefig(chart_path)
plt.close(fig)
return chart_path
except Exception as e:
log_entries.append(f"Error generating chart: {str(e)}")
logging.error(f"Error generating chart: {str(e)}")
return None
def monitor_feed() -> Tuple[
Optional[np.ndarray],
str,
str,
List[str],
List[str],
Optional[str],
Optional[str]
]:
global paused, frame_count, last_frame, last_metrics, last_timestamp
global gps_coordinates, detected_plants, detected_issues, media_loaded
global is_video, static_image
if not media_loaded:
log_entries.append("Cannot start processing: Media not loaded successfully.")
logging.error("Media not loaded successfully.")
return (
None,
json.dumps({"error": "Media not loaded. Please upload a video or image file."}, indent=2),
"\n".join(log_entries[-10:]),
detected_plants,
detected_issues,
None,
None
)
if paused and last_frame is not None:
frame = last_frame.copy()
metrics = last_metrics.copy()
else:
max_retries = 3
start_time = time.time()
for attempt in range(max_retries):
try:
if is_video:
frame = get_next_video_frame()
if frame is None:
log_entries.append(f"Frame retrieval failed on attempt {attempt + 1}, resetting video.")
logging.warning(f"Frame retrieval failed on attempt {attempt + 1}, resetting video.")
reset_video_index()
continue
break
else:
frame = static_image.copy()
break
except Exception as e:
log_entries.append(f"Frame retrieval error on attempt {attempt + 1}: {str(e)}")
logging.error(f"Frame retrieval error on attempt {attempt + 1}: {str(e)}")
if attempt == max_retries - 1:
return (
None,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_plants,
detected_issues,
None,
None
)
else:
log_entries.append("Failed to retrieve frame after maximum retries.")
logging.error("Failed to retrieve frame after maximum retries.")
return (
None,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_plants,
detected_issues,
None,
None
)
# Resize frame for faster detection (320x512)
detection_frame = cv2.resize(frame, (512, 320))
all_detected_items: List[Dict[str, Any]] = []
shadow_issue = False
thermal_flag = False
try:
# Process frame based on active service
if active_service == "under_construction":
earthwork_dets, detection_frame = process_earthwork(detection_frame)
culvert_dets, detection_frame = process_culverts(detection_frame)
bridge_pier_dets, detection_frame = process_bridge_piers(detection_frame)
all_detected_items.extend(earthwork_dets + culvert_dets + bridge_pier_dets)
elif active_service == "operations_maintenance":
crack_hole_dets, detection_frame = detect_cracks_and_holes(detection_frame)
pothole_dets, detection_frame = process_potholes(detection_frame)
signage_dets, detection_frame = process_signages(detection_frame)
all_detected_items.extend(crack_hole_dets + pothole_dets + signage_dets)
elif active_service == "road_safety":
barrier_dets, detection_frame = process_barriers(detection_frame)
lighting_dets, detection_frame = process_lighting(detection_frame)
accident_dets, detection_frame = process_accident_spots(detection_frame)
pothole_crack_dets, detection_frame = detect_potholes_and_cracks(detection_frame)
all_detected_items.extend(barrier_dets + lighting_dets + accident_dets + pothole_crack_dets)
elif active_service == "plantation":
plant_dets, detection_frame = process_plants(detection_frame)
health_dets, detection_frame = process_plant_health(detection_frame)
missing_dets, detection_frame = process_missing_patches(detection_frame)
all_detected_items.extend(plant_dets + health_dets + missing_dets)
else:
generic_dets, detection_frame = process_generic(detection_frame)
all_detected_items.extend(generic_dets)
# Apply shadow detection
try:
cv2.imwrite(TEMP_IMAGE_PATH, detection_frame)
shadow_issue = detect_shadow_coverage(TEMP_IMAGE_PATH)
except Exception as e:
log_entries.append(f"Error saving temp image for shadow detection: {str(e)}")
logging.error(f"Error saving temp image: {str(e)}")
shadow_issue = False
# Apply thermal processing if frame is grayscale
if len(detection_frame.shape) == 2:
thermal_results = process_thermal(detection_frame)
thermal_dets = thermal_results["detections"]
detection_frame = thermal_results["frame"]
all_detected_items.extend(thermal_dets)
thermal_flag = bool(thermal_dets)
# Scale bounding boxes back to original frame size
orig_h, orig_w = frame.shape[:2]
det_h, det_w = detection_frame.shape[:2]
scale_x, scale_y = orig_w / det_w, orig_h / det_h
for item in all_detected_items:
if "box" in item:
box = item["box"]
item["box"] = [
int(box[0] * scale_x),
int(box[1] * scale_y),
int(box[2] * scale_x),
int(box[3] * scale_y)
]
# Overlay detections on the original frame
for item in all_detected_items:
box = item.get("box", [])
if not box:
continue
x_min, y_min, x_max, y_max = box
label = item.get("label", "")
dtype = item.get("type", "")
# Assign colors based on detection type
if dtype == "plant":
color = (0, 255, 0) # Green for plants
elif dtype == "crack":
color = (255, 0, 0) # Red for cracks
elif dtype == "hole":
color = (0, 0, 255) # Blue for holes
elif dtype == "missing_patch":
color = (255, 165, 0) # Orange for missing patches
else:
color = (255, 255, 0) # Yellow for others
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
cv2.putText(frame, label, (x_min, y_min - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Save temporary image
try:
cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
except Exception as e:
log_entries.append(f"Error saving temp image: {str(e)}")
logging.error(f"Error saving temp image: {str(e)}")
except Exception as e:
log_entries.append(f"Processing Error: {str(e)}")
logging.error(f"Processing error in {active_service}: {str(e)}")
all_detected_items = []
# Update detection metrics
metrics = update_metrics(all_detected_items)
# Generate GPS coordinates
gps_coord = [17.385044 + random.uniform(-0.001, 0.001), 78.486671 + frame_count * 0.0001]
gps_coordinates.append(gps_coord)
# Add GPS to detected items for mapping
for item in all_detected_items:
item["gps"] = gps_coord
# Save frame if detections are present
detection_types = {item.get("type") for item in all_detected_items if "type" in item}
if detection_types:
try:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg")
success = cv2.imwrite(captured_frame_path, frame)
if not success:
raise RuntimeError(f"Failed to save captured frame: {captured_frame_path}")
for item in all_detected_items:
dtype = item.get("type", "")
if dtype == "plant":
detected_plants.append(captured_frame_path)
if len(detected_plants) > 100:
detected_plants.pop(0)
elif dtype in ["crack", "hole", "missing_patch"]:
detected_issues.append(captured_frame_path)
if len(detected_issues) > 100:
detected_issues.pop(0)
except Exception as e:
log_entries.append(f"Error saving captured frame: {str(e)}")
logging.error(f"Error saving captured frame: {str(e)}")
# Prepare data for Salesforce dispatch
all_detections = {
"detections": all_detected_items,
"metrics": metrics,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"frame_count": frame_count,
"gps_coordinates": gps_coord,
"shadow_issue": shadow_issue,
"thermal": thermal_flag
}
# Dispatch to Salesforce
try:
send_to_salesforce(all_detections)
except Exception as e:
log_entries.append(f"Salesforce Dispatch Error: {str(e)}")
logging.error(f"Salesforce dispatch error: {str(e)}")
# Save processed frame
try:
frame_path = os.path.join(OUTPUT_DIR, f"frame_{frame_count:04d}.jpg")
success = cv2.imwrite(frame_path, frame)
if not success:
raise RuntimeError(f"Failed to save output frame: {frame_path}")
except Exception as e:
log_entries.append(f"Error saving output frame: {str(e)}")
logging.error(f"Error saving output frame: {str(e)}")
# Update global variables
frame_count += 1
last_timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
last_frame = frame.copy()
last_metrics = metrics
# Track detections for metrics
plant_detected = len([item for item in all_detected_items if item.get("type") == "plant"])
crack_detected = len([item for item in all_detected_items if item.get("type") == "crack"])
hole_detected = len([item for item in all_detected_items if item.get("type") == "hole"])
missing_detected = len([item for item in all_detected_items if item.get("type") == "missing_patch"])
detected_counts.append(plant_detected + crack_detected + hole_detected + missing_detected)
# Log frame processing details in the requested format
processing_time = time.time() - start_time
detection_summary = {
"timestamp": last_timestamp,
"frame": frame_count,
"plants": plant_detected,
"cracks": crack_detected,
"holes": hole_detected,
"missing_patches": missing_detected,
"gps": gps_coord,
"processing_time_ms": processing_time * 1000
}
log_message = json.dumps(detection_summary, indent=2)
log_entries.append(log_message)
logging.info(log_message)
# Limit the size of logs and detection data
if len(log_entries) > 100:
log_entries.pop(0)
if len(detected_counts) > 500:
detected_counts.pop(0)
# Resize frame and add metadata for display
frame = cv2.resize(last_frame, (640, 480))
cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, f"{last_timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# Generate map
map_items = [item for item in last_metrics.get("items", []) if item.get("type") in ["crack", "hole", "missing_patch"]]
map_path = generate_map(gps_coordinates[-5:], map_items)
return (
frame[:, :, ::-1], # Convert BGR to RGB for Gradio
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_plants,
detected_issues,
generate_line_chart(),
map_path
)
# Gradio UI setup
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="green")) as app:
gr.Markdown(
"""
# 🛡️ NHAI Drone Road Inspection Dashboard
Monitor highway conditions in real-time using drone footage or static images. Select a service category to analyze specific aspects of the road or plantation.
"""
)
with gr.Row():
with gr.Column(scale=3):
media_input = gr.File(label="Upload Media File (e.g., sample.mp4, image.jpg)", file_types=[".mp4", ".avi", ".jpg", ".jpeg", ".png"])
load_button = gr.Button("Load Media", variant="primary")
with gr.Column(scale=1):
media_status = gr.Textbox(
label="Media Load Status",
value="Please upload a video/image file or ensure 'sample.mp4' exists in the root directory.",
interactive=False
)
with gr.Row():
with gr.Column():
uc_toggle = gr.Checkbox(label="Enable Under Construction Services", value=False)
uc_status = gr.Textbox(label="Under Construction Status", value="Disabled", interactive=False)
with gr.Column():
om_toggle = gr.Checkbox(label="Enable Operations Maintenance Services", value=False)
om_status = gr.Textbox(label="Operations Maintenance Status", value="Disabled", interactive=False)
with gr.Column():
rs_toggle = gr.Checkbox(label="Enable Road Safety Services", value=False)
rs_status = gr.Textbox(label="Road Safety Status", value="Disabled", interactive=False)
with gr.Column():
pl_toggle = gr.Checkbox(label="Enable Plantation Services", value=False)
pl_status = gr.Textbox(label="Plantation Status", value="Disabled", interactive=False)
status_text = gr.Markdown("**Status:** 🟢 Ready (Upload a media file to start)")
with gr.Row():
with gr.Column(scale=3):
media_output = gr.Image(label="Live Feed", width=640, height=480, elem_id="live-feed")
with gr.Column(scale=1):
metrics_output = gr.Textbox(
label="Detection Metrics",
lines=10,
interactive=False,
placeholder="Detection metrics, counts will appear here."
)
with gr.Row():
with gr.Column(scale=2):
logs_output = gr.Textbox(label="Live Logs", lines=8, interactive=False)
with gr.Column(scale=1):
plant_images = gr.Gallery(label="Detected Plants (Last 100+)", columns=4, rows=13, height="auto")
issue_images = gr.Gallery(label="Detected Issues (Last 100+)", columns=4, rows=13, height="auto")
with gr.Row():
chart_output = gr.Image(label="Detection Trend")
map_output = gr.Image(label="Issue Locations Map")
with gr.Row():
pause_btn = gr.Button("⏸️ Pause", variant="secondary")
resume_btn = gr.Button("▶️ Resume", variant="primary")
frame_slider = gr.Slider(0.05, 1.0, value=0.3, label="Frame Interval (seconds)", step=0.05)
gr.HTML("""
<style>
#live-feed {
border: 2px solid #4682B4;
border-radius: 10px;
}
.gr-button-primary {
background-color: #4682B4 !important;
}
.gr-button-secondary {
background-color: #FF6347 !important;
}
</style>
""")
def toggle_pause() -> str:
global paused
paused = True
return "**Status:** ⏸️ Paused"
def toggle_resume() -> str:
global paused
paused = False
return "**Status:** 🟢 Streaming"
def set_frame_rate(val: float) -> None:
global frame_rate
frame_rate = val
media_status.value = initialize_media()
load_button.click(
initialize_media,
inputs=[media_input],
outputs=[media_status]
)
def update_toggles(uc_val: bool, om_val: bool, rs_val: bool, pl_val: bool) -> Tuple[str, str, str, str, str]:
active, status_message = set_active_service("toggle", uc_val, om_val, rs_val, pl_val)
uc_status_val = "Enabled" if active == "under_construction" else "Disabled"
om_status_val = "Enabled" if active == "operations_maintenance" else "Disabled"
rs_status_val = "Enabled" if active == "road_safety" else "Disabled"
pl_status_val = "Enabled" if active == "plantation" else "Disabled"
return (
uc_status_val, om_status_val, rs_status_val, pl_status_val, status_message
)
toggle_inputs = [uc_toggle, om_toggle, rs_toggle, pl_toggle]
toggle_outputs = [uc_status, om_status, rs_status, pl_status, status_text]
uc_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
om_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
rs_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
pl_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
pause_btn.click(toggle_pause, outputs=status_text)
resume_btn.click(toggle_resume, outputs=status_text)
frame_slider.change(set_frame_rate, inputs=[frame_slider])
def streaming_loop():
while True:
if not media_loaded:
yield None, json.dumps({"error": "Media not loaded. Please upload a video or image file."}, indent=2), "\n".join(log_entries[-10:]), detected_plants, detected_issues, None, None
else:
frame, metrics, logs, plants, issues, chart, map_path = monitor_feed()
if frame is None:
yield None, metrics, logs, plants, issues, chart, map_path
else:
yield frame, metrics, logs, plants, issues, chart, map_path
if not is_video:
# For static images, yield once and pause
break
time.sleep(frame_rate)
app.load(streaming_loop, outputs=[media_output, metrics_output, logs_output, plant_images, issue_images, chart_output, map_output])
if __name__ == "__main__":
app.launch(share=True) # Set share=True to create a public link |