surveillance143 / app.py
lokesh341's picture
Update app.py
3c35ee6 verified
raw
history blame
20.9 kB
import os
import gradio as gr
import cv2
import time
import json
import random
import logging
import matplotlib.pyplot as plt
from datetime import datetime
from collections import Counter
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
# Suppress Ultralytics warning by setting a writable config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
# Import service modules
try:
from services.video_service import get_next_video_frame, reset_video_index, preload_video, release_video
from services.detection_service import process_frame as process_generic
from services.metrics_service import update_metrics
from services.overlay_service import overlay_boxes
from services.salesforce_dispatcher import send_to_salesforce
from services.shadow_detection import detect_shadow_coverage
from services.thermal_service import process_thermal
from services.map_service import generate_map
# Under Construction services
from services.under_construction.earthwork_detection import process_earthwork
from services.under_construction.culvert_check import process_culverts
from services.under_construction.bridge_pier_check import process_bridge_piers
# Operations Maintenance services
from services.operations_maintenance.crack_detection import detect_cracks_and_holes
from services.operations_maintenance.pothole_detection import process_potholes
from services.operations_maintenance.signage_check import process_signages
# Road Safety services
from services.road_safety.barrier_check import process_barriers
from services.road_safety.lighting_check import process_lighting
from services.road_safety.accident_spot_check import process_accident_spots
from services.road_safety.pothole_crack_detection import detect_potholes_and_cracks
# Plantation services
from services.plantation.plant_count import process_plants
from services.plantation.plant_health import process_plant_health
from services.plantation.missing_patch_check import process_missing_patches
except ImportError as e:
print(f"Failed to import service modules: {str(e)}")
logging.error(f"Import error: {str(e)}")
exit(1)
# Configure logging
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Global variables
paused: bool = False
frame_rate: float = 0.3
frame_count: int = 0
log_entries: List[str] = []
crack_counts: List[int] = []
crack_severity_all: List[str] = []
last_frame: Optional[np.ndarray] = None
last_metrics: Dict[str, Any] = {}
last_timestamp: str = ""
last_detected_cracks: List[str] = []
last_detected_holes: List[str] = []
gps_coordinates: List[List[float]] = []
video_loaded: bool = False
active_service: Optional[str] = None
# Constants
DEFAULT_VIDEO_PATH = "sample.mp4"
TEMP_IMAGE_PATH = "temp.jpg"
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
def initialize_video(video_file: Optional[Any] = None) -> str:
global video_loaded, log_entries
release_video()
video_path = DEFAULT_VIDEO_PATH if video_file is None else video_file.name
if not os.path.exists(video_path):
status = f"Error: Video file '{video_path}' not found."
log_entries.append(status)
logging.error(status)
video_loaded = False
return status
try:
preload_video(video_path)
video_loaded = True
status = f"Successfully loaded video: {video_path}"
log_entries.append(status)
logging.info(status)
return status
except Exception as e:
video_loaded = False
status = f"Error loading video: {str(e)}"
log_entries.append(status)
logging.error(status)
return status
def set_active_service(
service_name: str,
uc_val: bool,
om_val: bool,
rs_val: bool,
pl_val: bool
) -> Tuple[Optional[str], str]:
global active_service
toggles = {
"under_construction": uc_val,
"operations_maintenance": om_val,
"road_safety": rs_val,
"plantation": pl_val
}
active_count = sum(toggles.values())
if active_count > 1:
log_entries.append("Error: Only one service category can be active at a time.")
logging.error("Multiple service categories enabled simultaneously.")
return None, "Error: Please enable only one service category at a time."
for service, enabled in toggles.items():
if enabled:
active_service = service
log_entries.append(f"{service.replace('_', ' ').title()} Services Enabled")
logging.info(f"{service} services enabled")
return active_service, f"{service.replace('_', ' ').title()} Services: Enabled"
active_service = None
log_entries.append("No service category enabled.")
logging.info("No service category enabled.")
return None, "No Service Category Enabled"
def generate_line_chart():
if not crack_counts:
return None
```chartjs
{
"type": "line",
"data": {
"labels": [i for i in range(len(crack_counts[-50:]))],
"datasets": [{
"label": crack_counts[-50:],
"data": crack_counts[-50:],
"borderColor": "#4682B4",
"backgroundColor": "#4682B4",
"fill": false,
"pointBackgroundColor": "#3CB371",
"pointRadius": 5
}]
},
"options": {
"responsive": false,
"scales": {
"x": {
"title": {
"display": true,
"text": "Frame"
}
},
"y": {
"title": {
"display": true,
"text": "Count of Cracks/Holes"
}
}
},
"title": {
"display": true,
"text": "Cracks/Holes Over Time"
}
}
}
```
def generate_map(gps_coordinates: List[List[float]], items: List[Dict]]) -> Optional[str]:
return generate_map(gps_coordinates, items)
def monitor_feed() -> Tuple[
Optional[np.ndarray],
str,
str,
List[str],
List[str],
Optional[str],
global
paused,
frame_count,
last_frame,
last_metrics,
last_timestamp,
gps_coordinates,
last_detected_cracks,
last_detected_holes,
video_loaded
if not video_loaded:
log_entries.append(("Cannot start streaming: Video not loaded successfully.")
logging.error("Video not loaded successfully.")
return (
None,
json.dumps({"error": "Video not loaded. Please upload a video file."}, indent=2),
"\n".join(log_entries[-10:]),
last_detected_cracks,
last_detected_holes,
None,
None
)
if paused and last_frame is not None:
frame = last_frame.copy()
metrics = last_metrics.copy()
else:
try:
frame = get_next_video_frame()
if frame is None:
raise RuntimeError("Failed to retrieve frame from video.")
except RuntimeError as e:
log_entries.append(f"Error: {str(e)}")
logging.error(f"Frame retrieval error: {str(e)}")
return (
None,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
last_detected_cracks,
last_detected_holes,
None,
None
)
all_detected_items: List[Dict[str, Any]] = []
shadow_issue = False
thermal_flag = False
try:
# Process frame based on active service
if active_service == "under_construction":
earthwork_dets, frame = process_earthwork(frame)
culvert_dets, frame = process_culverts(frame)
bridge_pier_dets, frame = process_bridge_piers(frame)
all_detected_items.extend(earthwork_dets + culvert_dets + bridge_pier_dets)
elif active_service == "operations_maintenance":
crack_hole_dets, frame = detect_cracks_and_holes(frame)
pothole_dets, frame = process_potholes(frame)
signage_dets, frame = process_signages(frame)
all_detected_items.extend(crack_hole_dets + pothole_dets + signage_dets)
elif active_service == "road_safety":
barrier_dets, frame = process_barriers(frame)
lighting_dets, frame = process_lighting(frame)
accident_dets, frame = process_accident_spots(frame)
pothole_crack_dets, frame = detect_potholes_and_cracks(frame)
all_detected_items.extend(barrier_dets + lighting_dets + accident_dets + pothole_crack_dets)
elif active_service == "plantation":
plant_dets, frame = process_plants(frame)
health_dets, frame = process_plant_health(frame)
missing_dets, frame = process_missing_patches(frame)
all_detected_items.extend(plant_dets + health_dets + missing_dets)
else:
generic_dets, frame = process_generic(frame)
all_detected_items.extend(generic_dets)
# Apply shadow detection
cv2.imwrite(TEMP_IMAGE_PATH, frame)
shadow_issue = detect_shadow_coverage(TEMP_IMAGE_PATH)
# Apply thermal processing if frame is grayscale
if len(frame.shape) == 2:
thermal_results = process_thermal(frame)
thermal_dets = thermal_results["detections"]
frame = thermal_results["frame"]
all_detected_items.extend(thermal_dets)
thermal_flag = bool(thermal_dets)
# Overlay detections
frame = overlay_boxes(frame, all_detected_items)
# Save temporary image
cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
except Exception as e:
log_entries.append(f"Processing Error: {str(e)}")
logging.error(f"Processing error in {active_service}: {str(e)}")
all_detected_items = []
# Update detection metrics
metrics = update_metrics(all_detected_items)
# Generate GPS coordinates
gps_coord = [17.385044 + random.uniform(-0.001, 0.001), 78.486671 + frame_count * 0.0001]
gps_coordinates.append(gps_coord)
# Save frame if detections are present
detection_types = {item.get("type") for item in all_detected_items if "type" in item}
if detection_types:
try:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg")
cv2.imwrite(captured_frame_path, frame)
for item in all_detected_items:
if item.get("type") == "crack":
last_detected_cracks.append(captured_frame_path)
if len(last_detected_cracks) > 100:
last_detected_cracks.pop(0)
elif item.get("type") == "hole":
last_detected_holes.append(captured_frame_path)
if len(last_detected_holes) > 100:
last_detected_holes.pop(0)
except Exception as e:
log_entries.append(f"Error saving captured frame: {str(e)}")
logging.error(f"Error saving captured frame: {str(e)}")
# Prepare data for Salesforce dispatch
all_detections = {
"detections": all_detected_items,
"metrics": metrics,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"frame_count": frame_count,
"gps_coordinates": gps_coord,
"shadow_issue": shadow_issue,
"thermal": thermal_flag
}
# Dispatch to Salesforce
try:
send_to_salesforce(all_detections)
except Exception as e:
log_entries.append(f"Salesforce Dispatch Error: {str(e)}")
logging.error(f"Salesforce dispatch error: {str(e)}")
# Save processed frame
try:
frame_path = os.path.join(OUTPUT_DIR, f"frame_{frame_count:04d}.jpg")
cv2.imwrite(frame_path, frame)
except Exception as e:
log_entries.append(f"Error saving output frame: {str(e)}")
logging.error(f"Error saving output frame: {str(e)}")
# Update global variables
frame_count += 1
last_timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
last_frame = frame.copy()
last_metrics = metrics
# Track cracks/holes for metrics
crack_detected = len([item for item in all_detected_items if item.get("type") == "crack"])
hole_detected = len([item for item in all_detected_items if item.get("type") == "hole"])
if active_service in ["operations_maintenance", "road_safety"]:
crack_severity_all.extend([
item["severity"]
for item in all_detected_items
if item.get("type") in ["crack", "hole"] and "severity" in item
])
crack_counts.append(crack_detected + hole_detected)
# Log frame processing details
log_message = f"{last_timestamp} - Frame {frame_count} - Cracks: {crack_detected} - Holes: {hole_detected} - GPS: {gps_coord}"
log_entries.append(log_message)
logging.info(log_message)
# Limit the size of logs and crack data
if len(log_entries) > 100:
log_entries.pop(0)
if len(crack_counts) > 500:
crack_counts.pop(0)
if len(crack_severity_all) > 500:
crack_severity_all.pop(0)
# Resize frame and add metadata for display
frame = cv2.resize(last_frame, (640, 480))
cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, f"{last_timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# Generate map
map_path = generate_map(gps_coordinates[-5:], [item for item in last_metrics.get("items", []) if item.get("type") in ["crack", "hole"]])
return (
frame[:, :, ::-1], # Convert BGR to RGB for Gradio
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
last_detected_cracks,
last_detected_holes,
generate_line_chart(),
map_path
)
# Gradio UI setup
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="green")) as app:
gr.Markdown(
"""
# 🛡️ NHAI Drone Road Inspection Dashboard
Monitor highway conditions in real-time using drone footage. Select a service category to analyze specific aspects of the road.
"""
)
with gr.Row():
with gr.Column(scale=3):
video_input = gr.File(label="Upload Video File (e.g., sample.mp4)", file_types=[".mp4", ".avi"])
load_button = gr.Button("Load Video", variant="primary")
with gr.Column(scale=1):
video_status = gr.Textbox(
label="Video Load Status",
value="Please upload a video file or ensure 'sample.mp4' exists in the root directory.",
interactive=False
)
with gr.Row():
with gr.Column():
uc_toggle = gr.Checkbox(label="Enable Under Construction Services", value=False)
uc_status = gr.Textbox(label="Under Construction Status", value="Disabled", interactive=False)
with gr.Column():
om_toggle = gr.Checkbox(label="Enable Operations Maintenance Services", value=False)
om_status = gr.Textbox(label="Operations Maintenance Status", value="Disabled", interactive=False)
with gr.Column():
rs_toggle = gr.Checkbox(label="Enable Road Safety Services", value=False)
rs_status = gr.Textbox(label="Road Safety Status", value="Disabled", interactive=False)
with gr.Column():
pl_toggle = gr.Checkbox(label="Enable Plantation Services", value=False)
pl_status = gr.Textbox(label="Plantation Status", value="Disabled", interactive=False)
status_text = gr.Markdown("**Status:** 🟢 Ready (Upload a video to start)")
with gr.Row():
with gr.Column(scale=3):
video_output = gr.Image(label="Live Drone Feed", width=640, height=480, elem_id="live-feed")
with gr.Column(scale=1):
metrics_output = gr.Textbox(
label="Detection Metrics",
lines=10,
interactive=False,
placeholder="Detection metrics, crack/hole counts will appear here."
)
with gr.Row():
with gr.Column(scale=2):
logs_output = gr.Textbox(label="Live Logs", lines=8, interactive=False)
with gr.Column(scale=1):
crack_images = gr.Gallery(label="Detected Cracks (Last 100+)", columns=4, rows=13, height="auto")
hole_images = gr.Gallery(label="Detected Holes (Last 100+)", columns=4, rows=13, height="auto")
with gr.Row():
chart_output = gr.Image(label="Crack/Hole Trend")
map_output = gr.Image(label="Crack/Hole Locations Map")
with gr.Row():
pause_btn = gr.Button("⏸️ Pause", variant="secondary")
resume_btn = gr.Button("▶️ Resume", variant="primary")
frame_slider = gr.Slider(0.05, 1.0, value=0.3, label="Frame Interval (seconds)", step=0.05)
gr.HTML("""
<style>
#live-feed {
border: 2px solid #4682B4;
border-radius: 10px;
}
.gr-button-primary {
background-color: #4682B4 !important;
}
.gr-button-secondary {
background-color: #FF6347 !important;
}
</style>
""")
def toggle_pause() -> str:
global paused
paused = True
return "**Status:** ⏸️ Paused"
def toggle_resume() -> str:
global paused
paused = False
return "**Status:** 🟢 Streaming"
def set_frame_rate(val: float) -> None:
global frame_rate
frame_rate = val
video_status.value = initialize_video()
load_button.click(
initialize_video,
inputs=[video_input],
outputs=[video_status]
)
def update_toggles(uc_val: bool, om_val: bool, rs_val: bool, pl_val: bool) -> Tuple[str, str, str, str, str]:
active, status_message = set_active_service("toggle", uc_val, om_val, rs_val, pl_val)
uc_status_val = "Enabled" if active == "under_construction" else "Disabled"
om_status_val = "Enabled" if active == "operations_maintenance" else "Disabled"
rs_status_val = "Enabled" if active == "road_safety" else "Disabled"
pl_status_val = "Enabled" if active == "plantation" else "Disabled"
return (
uc_status_val, om_status_val, rs_status_val, pl_status_val, status_message
)
toggle_inputs = [uc_toggle, om_toggle, rs_toggle, pl_toggle]
toggle_outputs = [uc_status, om_status, rs_status, pl_status, status_text]
uc_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
om_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
rs_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
pl_toggle.change(update_toggles, inputs=toggle_inputs, outputs=toggle_outputs)
pause_btn.click(toggle_pause, outputs=status_text)
resume_btn.click(toggle_resume, outputs=status_text)
frame_slider.change(set_frame_rate, inputs=[frame_slider])
def streaming_loop():
while True:
if not video_loaded:
yield None, json.dumps({"error": "Video not loaded. Please upload a video file."}, indent=2), "\n".join(log_entries[-10:]), last_detected_cracks, last_detected_holes, None, None
else:
frame, metrics, logs, cracks, holes, chart, map_path = monitor_feed()
if frame is None:
yield None, metrics, logs, cracks, holes, chart, map_path
else:
yield frame, metrics, logs, cracks, holes, chart, map_path
time.sleep(frame_rate)
app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, crack_images, hole_images, chart_output, map_output])
if __name__ == "__main__":
app.launch(share=False)