Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
from ultralytics import YOLO | |
import os | |
import random | |
# Load YOLOv8m-seg model for crack detection | |
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) | |
MODEL_PATH = os.path.join(BASE_DIR, "../models/yolov8m-seg.pt") | |
model = YOLO(MODEL_PATH) | |
def detect_cracks_and_objects(frame): | |
""" | |
Detect cracks and other objects in a frame using YOLOv8m-seg. | |
Args: | |
frame: Input frame (numpy array) | |
Returns: | |
list: List of detected items with type, label, coordinates, confidence, and severity | |
""" | |
# Run YOLOv8 inference | |
results = model(frame) | |
detected_items = [] | |
line_counter = 1 # Initialize counter for numbered labels | |
# Process detections | |
for r in results: | |
for box in r.boxes: | |
conf = float(box.conf[0]) | |
if conf < 0.5: | |
continue | |
cls = int(box.cls[0]) | |
label = model.names[cls] | |
if label not in ["crack", "pothole", "object"]: # Assuming these classes exist | |
continue | |
xyxy = box.xyxy[0].cpu().numpy() | |
x_min, y_min, x_max, y_max = map(int, xyxy) | |
# Simulate severity for cracks | |
severity = None | |
if label == "crack": | |
severity = random.choice(["low", "medium", "high"]) | |
# Add numbered label | |
detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})" | |
item = { | |
"type": label, | |
"label": detection_label, | |
"confidence": conf, | |
"coordinates": [x_min, y_min, x_max, y_max] | |
} | |
if severity: | |
item["severity"] = severity | |
detected_items.append(item) | |
line_counter += 1 | |
return detected_items |