lokesh341 commited on
Commit
5c24364
·
1 Parent(s): d041b41

Create services/detection_service.py

Browse files
services/services/detection_service.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # services/detection_service.py
2
+ import cv2
3
+ import numpy as np
4
+ from ultralytics import YOLO
5
+ import os
6
+
7
+ # Load YOLOv8m model
8
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
9
+ MODEL_PATH = os.path.join(BASE_DIR, "../models/yolov8m.pt")
10
+ model = YOLO(MODEL_PATH)
11
+
12
+ def detect_objects(frame):
13
+ """
14
+ Detect objects in a frame using YOLOv8m.
15
+ Args:
16
+ frame: Input frame (numpy array)
17
+ Returns:
18
+ dict: Detection results with numbered labels
19
+ numpy array: Annotated frame
20
+ """
21
+ results = model(frame)
22
+
23
+ detections = []
24
+ line_counter = 1 # Initialize counter for numbered labels
25
+
26
+ for r in results:
27
+ for box in r.boxes:
28
+ conf = float(box.conf[0])
29
+ if conf < 0.5:
30
+ continue
31
+ cls = int(box.cls[0])
32
+ label = model.names[cls]
33
+ xyxy = box.xyxy[0].cpu().numpy()
34
+ x_min, y_min, x_max, y_max = map(int, xyxy)
35
+
36
+ # Add numbered label
37
+ detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})"
38
+ detections.append({
39
+ "label": detection_label,
40
+ "confidence": conf,
41
+ "coordinates": [x_min, y_min, x_max, y_max]
42
+ })
43
+
44
+ # Draw bounding box and label
45
+ color = (0, 255, 0) # Green for generic objects
46
+ cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
47
+ cv2.putText(frame, detection_label, (x_min, y_min - 10),
48
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
49
+
50
+ line_counter += 1
51
+
52
+ return {"detections": detections, "frame": frame}
53
+
54
+ def process_frame(frame):
55
+ """
56
+ Wrapper function for integration with app.py.
57
+ """
58
+ result = detect_objects(frame)
59
+ return result["detections"], result["frame"]