Spaces:
Sleeping
Sleeping
File size: 1,802 Bytes
6cb50ff a03d512 a668c53 a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 6cb50ff a03d512 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import cv2
import torch
import gradio as gr
from ultralytics import YOLO
# Load YOLOv8 model
model = YOLO('./data/model.pt') # Path to your model
# Define the function that processes the uploaded video
def process_video(video):
# Read the uploaded video file
input_video = cv2.VideoCapture(video.name) # 'video' here is the uploaded video file
# Get frame width, height, and fps from input video
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = input_video.get(cv2.CAP_PROP_FPS)
# Define output video writer
output_video_path = "/mnt/data/output_video.mp4" # Path to save the output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
while True:
# Read a frame from the video
ret, frame = input_video.read()
if not ret:
break # End of video
# Perform inference on the frame
results = model(frame)
# Extract annotated image from results
annotated_frame = results.render()[0] # This will give the frame with bounding boxes
# Write the annotated frame to the output video
output_video.write(annotated_frame)
# Release resources
input_video.release()
output_video.release()
return output_video_path
# Create a Gradio interface for video upload
iface = gr.Interface(fn=process_video,
inputs=gr.inputs.Video(label="Upload Video"),
outputs="file",
title="YOLOv8 Object Detection on Video",
description="Upload a video for object detection using YOLOv8")
# Launch the interface
iface.launch()
|