Spaces:
Sleeping
Sleeping
File size: 18,023 Bytes
6cb50ff a03d512 04f4d0b 8c84287 6070e3c 4527f8f 4f2217a 6070e3c bf5ec9c 1b0039c 6070e3c bf5ec9c 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 1b0039c 8c84287 1b0039c 0e0342e 5a2600a 8c84287 6070e3c 8c84287 a668c53 6070e3c 04f4d0b 8c84287 bf5ec9c 6070e3c 1b0039c 6070e3c 1b0039c 6070e3c 5a2600a 6070e3c 5a2600a bf5ec9c 5a2600a bf5ec9c 5a2600a bf5ec9c 0e0342e 5a2600a 0e0342e 1b0039c 0e0342e 1b0039c 0e0342e 5a2600a 6070e3c bf5ec9c 6070e3c bf5ec9c 6070e3c 5a2600a 6070e3c 0e0342e 6070e3c 8c84287 6070e3c 1b0039c 6070e3c 8c84287 6070e3c 1b0039c 6070e3c 0e0342e 6070e3c 1b0039c 6070e3c 5a2600a 1b0039c 6070e3c 1b0039c 6070e3c 1b0039c 6070e3c c16972a 5a2600a bf5ec9c 5a2600a 6070e3c a03d512 8c84287 6070e3c 8c84287 6070e3c 77ce6a0 6070e3c 1b0039c 6070e3c 1b0039c 0e0342e bf5ec9c 1b0039c 6070e3c 1b0039c 6070e3c 0b0a1d1 5a2600a bf5ec9c 5a2600a 1b0039c 6070e3c 0e0342e 5a2600a 0b0a1d1 6070e3c 5a2600a bf5ec9c 5a2600a bf5ec9c 5a2600a bf5ec9c 6070e3c 1b0039c 6070e3c c16972a 6070e3c b43bc78 4e407cd 1b0039c 6070e3c 1b0039c c16972a 6070e3c 5a2600a bf5ec9c 6070e3c 8c84287 6070e3c 1b0039c b43bc78 1b0039c a128de1 6070e3c 1b0039c 6070e3c 4f2217a 1b0039c 6070e3c 5a2600a 4527f8f 6070e3c bf5ec9c 2e47361 6070e3c 0e0342e a128de1 6070e3c a128de1 6070e3c a128de1 6070e3c 1b0039c 6070e3c 1b0039c 6070e3c 1b0039c 2e47361 8c84287 bf5ec9c 1b0039c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
import csv
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time
import piexif
import zipfile
# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
# Set up logging
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
FLIGHT_LOG_DIR = "flight_logs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
os.chmod(FLIGHT_LOG_DIR, 0o777)
# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1
# Detection classes
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
# Debug: Check environment
print(f"Torch version: {torch.__version__}")
print(f"Gradio version: {gr.__version__}")
print(f"Ultralytics version: {ultralytics.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Load custom YOLO model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
model.half()
print(f"Model classes: {model.names}")
def zip_directory(folder_path: str, zip_path: str) -> str:
"""Zip all files in a directory."""
try:
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, folder_path)
zipf.write(file_path, arcname)
return zip_path
except Exception as e:
logging.error(f"Failed to zip {folder_path}: {str(e)}")
log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}")
return ""
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
plt.figure(figsize=(4, 4))
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
plt.title("Issue Locations Map")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.savefig(map_path)
plt.close()
return map_path
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
try:
lat = abs(gps_coord[0])
lon = abs(gps_coord[1])
lat_ref = "N" if gps_coord[0] >= 0 else "S"
lon_ref = "E" if gps_coord[1] >= 0 else "W"
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
exif_dict["GPS"] = {
piexif.GPSIFD.GPSLatitudeRef: lat_ref,
piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
piexif.GPSIFD.GPSLongitudeRef: lon_ref,
piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
}
piexif.insert(piexif.dump(exif_dict), image_path)
return True
except Exception as e:
logging.error(f"Failed to geotag {image_path}: {str(e)}")
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
return False
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
try:
with open(log_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
return log_path
except Exception as e:
logging.error(f"Failed to write flight log {log_path}: {str(e)}")
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
return ""
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
height, width, _ = frame.shape
frame_resolution = width * height
if frame_resolution < 12_000_000:
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} ({frame_resolution/1e6:.2f}MP) below 12MP, non-compliant")
if frame_resolution < input_resolution:
log_entries.append(f"Frame {frame_count}: Output resolution {width}x{height} below input resolution")
return False
return True
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
counts = Counter([det["label"] for det in detections])
return {
"items": [{"type": k, "count": v} for k, v in counts.items()],
"total_detections": len(detections),
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
def generate_line_chart() -> Optional[str]:
if not detected_counts:
return None
plt.figure(figsize=(4, 2))
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
plt.title("Detections Over Time")
plt.xlabel("Frame")
plt.ylabel("Count")
plt.grid(True)
plt.tight_layout()
chart_path = os.path.join(OUTPUT_DIR, "chart_temp.png")
plt.savefig(chart_path)
plt.close()
return chart_path
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
frame_count = 0
detected_counts.clear()
detected_issues.clear()
gps_coordinates.clear()
log_entries.clear()
last_metrics = {}
if video is None:
log_entries.append("Error: No video uploaded")
logging.error("No video uploaded")
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
start_time = time.time()
cap = cv2.VideoCapture(video)
if not cap.isOpened():
log_entries.append("Error: Could not open video file")
logging.error("Could not open video file")
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
input_resolution = frame_width * frame_height
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
expected_duration = total_frames / fps if fps > 0 else 0
log_entries.append(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
logging.info(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
print(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
out_width, out_height = resize_width, resize_height
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height))
if not out.isOpened():
log_entries.append("Error: Failed to initialize mp4v codec")
logging.error("Failed to initialize mp4v codec")
cap.release()
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
processed_frames = 0
all_detections = []
frame_times = []
inference_times = []
resize_times = []
io_times = []
detection_frame_count = 0
output_frame_count = 0
last_annotated_frame = None
data_lake_submission = {
"images": [],
"flight_logs": [],
"analytics": [],
"metrics": {}
}
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % frame_skip != 0:
continue
processed_frames += 1
frame_start = time.time()
# Resize
resize_start = time.time()
frame = cv2.resize(frame, (out_width, out_height))
resize_times.append((time.time() - resize_start) * 1000)
if not check_image_quality(frame, input_resolution):
log_entries.append(f"Frame {frame_count}: Skipped due to low resolution")
continue
# Inference
inference_start = time.time()
results = model(frame, verbose=False, conf=0.5, iou=0.7)
annotated_frame = results[0].plot()
inference_times.append((time.time() - inference_start) * 1000)
frame_timestamp = frame_count / fps if fps > 0 else 0
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
gps_coordinates.append(gps_coord)
io_start = time.time()
frame_detections = []
for detection in results[0].boxes:
cls = int(detection.cls)
conf = float(detection.conf)
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
label = model.names[cls]
if label in DETECTION_CLASSES:
frame_detections.append({
"label": label,
"box": box,
"conf": conf,
"gps": gps_coord,
"timestamp": timestamp_str
})
log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}"
log_entries.append(log_message)
logging.info(log_message)
if frame_detections:
detection_frame_count += 1
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
if cv2.imwrite(captured_frame_path, annotated_frame):
if write_geotag(captured_frame_path, gps_coord):
detected_issues.append(captured_frame_path)
data_lake_submission["images"].append({
"path": captured_frame_path,
"frame": frame_count,
"gps": gps_coord,
"timestamp": timestamp_str
})
if len(detected_issues) > 100:
detected_issues.pop(0)
else:
log_entries.append(f"Frame {frame_count}: Geotagging failed")
else:
log_entries.append(f"Error: Failed to save {captured_frame_path}")
logging.error(f"Failed to save {captured_frame_path}")
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
if flight_log_path:
data_lake_submission["flight_logs"].append({
"path": flight_log_path,
"frame": frame_count
})
io_times.append((time.time() - io_start) * 1000)
out.write(annotated_frame)
output_frame_count += 1
last_annotated_frame = annotated_frame
if frame_skip > 1:
for _ in range(frame_skip - 1):
out.write(annotated_frame)
output_frame_count += 1
detected_counts.append(len(frame_detections))
all_detections.extend(frame_detections)
frame_time = (time.time() - frame_start) * 1000
frame_times.append(frame_time)
log_entries.append(f"Frame {frame_count}: Processed in {frame_time:.2f} ms (Resize: {resize_times[-1]:.2f} ms, Inference: {inference_times[-1]:.2f} ms, I/O: {io_times[-1]:.2f} ms)")
if len(log_entries) > 50:
log_entries.pop(0)
if time.time() - start_time > 600:
log_entries.append("Error: Processing timeout after 600 seconds")
logging.error("Processing timeout after 600 seconds")
break
while output_frame_count < total_frames and last_annotated_frame is not None:
out.write(last_annotated_frame)
output_frame_count += 1
last_metrics = update_metrics(all_detections)
data_lake_submission["metrics"] = last_metrics
data_lake_submission["frame_count"] = frame_count
data_lake_submission["gps_coordinates"] = gps_coordinates[-1] if gps_coordinates else [0, 0]
submission_json_path = os.path.join(OUTPUT_DIR, "data_lake_submission.json")
try:
with open(submission_json_path, 'w') as f:
json.dump(data_lake_submission, f, indent=2)
log_entries.append(f"Submission JSON saved: {submission_json_path}")
logging.info(f"Submission JSON saved: {submission_json_path}")
except Exception as e:
log_entries.append(f"Error: Failed to save submission JSON: {str(e)}")
logging.error(f"Failed to save submission JSON: {str(e)}")
cap.release()
out.release()
cap = cv2.VideoCapture(output_path)
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
output_fps = cap.get(cv2.CAP_PROP_FPS)
output_duration = output_frames / output_fps if output_fps > 0 else 0
cap.release()
total_time = time.time() - start_time
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
avg_resize_time = sum(resize_times) / len(resize_times) if resize_times else 0
avg_inference_time = sum(inference_times) / len(inference_times) if inference_times else 0
avg_io_time = sum(io_times) / len(io_times) if io_times else 0
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
print(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
chart_path = generate_line_chart()
map_path = generate_map(gps_coordinates[-5:], all_detections)
# Zip images and logs
images_zip = zip_directory(CAPTURED_FRAMES_DIR, os.path.join(OUTPUT_DIR, "captured_frames.zip"))
logs_zip = zip_directory(FLIGHT_LOG_DIR, os.path.join(OUTPUT_DIR, "flight_logs.zip"))
return (
output_path,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_issues,
chart_path,
map_path,
submission_json_path,
images_zip,
logs_zip,
output_path # For video download
)
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
gr.Markdown("# NHAI Road Defect Detection Dashboard")
with gr.Row():
with gr.Column(scale=3):
video_input = gr.Video(label="Upload Video (12MP recommended for NHAI compliance)")
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
with gr.Row():
video_output = gr.Video(label="Processed Video")
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
with gr.Row():
chart_output = gr.Image(label="Detection Trend")
map_output = gr.Image(label="Issue Locations Map")
with gr.Row():
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
with gr.Row():
gr.Markdown("## Download Results")
with gr.Row():
json_download = gr.File(label="Download Data Lake JSON")
images_zip_download = gr.File(label="Download Geotagged Images (ZIP)")
logs_zip_download = gr.File(label="Download Flight Logs (ZIP)")
video_download = gr.File(label="Download Processed Video")
process_btn.click(
fn=process_video,
inputs=[video_input, width_slider, height_slider, skip_slider],
outputs=[
video_output,
metrics_output,
logs_output,
issue_gallery,
chart_output,
map_output,
json_download,
images_zip_download,
logs_zip_download,
video_download
]
)
if __name__ == "__main__":
iface.launch() |